MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bigolden Structured version   Visualization version   Unicode version

Theorem bigolden 976
Description: Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by NM, 10-Jan-2005.)
Assertion
Ref Expression
bigolden  |-  ( ( ( ph  /\  ps ) 
<-> 
ph )  <->  ( ps  <->  (
ph  \/  ps )
) )

Proof of Theorem bigolden
StepHypRef Expression
1 pm4.71 662 . 2  |-  ( (
ph  ->  ps )  <->  ( ph  <->  (
ph  /\  ps )
) )
2 pm4.72 920 . 2  |-  ( (
ph  ->  ps )  <->  ( ps  <->  (
ph  \/  ps )
) )
3 bicom 212 . 2  |-  ( (
ph 
<->  ( ph  /\  ps ) )  <->  ( ( ph  /\  ps )  <->  ph ) )
41, 2, 33bitr3ri 291 1  |-  ( ( ( ph  /\  ps ) 
<-> 
ph )  <->  ( ps  <->  (
ph  \/  ps )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator