| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.71 | Structured version Visualization version Unicode version | ||
| Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
| Ref | Expression |
|---|---|
| pm4.71 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . 3
| |
| 2 | 1 | biantru 526 |
. 2
|
| 3 | anclb 570 |
. 2
| |
| 4 | dfbi2 660 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: pm4.71r 663 pm4.71i 664 pm4.71d 666 bigolden 976 pm5.75 978 pm5.75OLD 979 rabid2 3118 rabid2f 3119 dfss2 3591 disj3 4021 dmopab3 5337 mptfnf 6015 nanorxor 38504 |
| Copyright terms: Public domain | W3C validator |