Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalgv Structured version   Visualization version   Unicode version

Theorem bj-ceqsalgv 32880
Description: Version of bj-ceqsalg 32878 with a dv condition on  x ,  V, removing dependency on df-sb 1881 and df-clab 2609. Prefer its use over bj-ceqsalg 32878 when sufficient (in particular when  V is substituted for  _V). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-ceqsalgv.1  |-  F/ x ps
bj-ceqsalgv.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
bj-ceqsalgv  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem bj-ceqsalgv
StepHypRef Expression
1 bj-elissetv 32861 . 2  |-  ( A  e.  V  ->  E. x  x  =  A )
2 bj-ceqsalgv.1 . . 3  |-  F/ x ps
3 bj-ceqsalgv.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
42, 3bj-ceqsalg0 32877 . 2  |-  ( E. x  x  =  A  ->  ( A. x
( x  =  A  ->  ph )  <->  ps )
)
51, 4syl 17 1  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-ex 1705  df-nf 1710  df-clel 2618
This theorem is referenced by:  bj-ceqsal  32882  bj-raldifsn  33054
  Copyright terms: Public domain W3C validator