Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-consensusALT Structured version   Visualization version   Unicode version

Theorem bj-consensusALT 32563
Description: Alternate proof of bj-consensus 32562. (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-consensusALT  |-  ( (if- ( ph ,  ps ,  ch )  \/  ( ps  /\  ch ) )  <-> if- ( ph ,  ps ,  ch ) )

Proof of Theorem bj-consensusALT
StepHypRef Expression
1 orcom 402 . 2  |-  ( (if- ( ph ,  ps ,  ch )  \/  ( ps  /\  ch ) )  <-> 
( ( ps  /\  ch )  \/ if- ( ph ,  ps ,  ch )
) )
2 anifp 1020 . . 3  |-  ( ( ps  /\  ch )  -> if- ( ph ,  ps ,  ch ) )
3 pm4.72 920 . . 3  |-  ( ( ( ps  /\  ch )  -> if- ( ph ,  ps ,  ch )
)  <->  (if- ( ph ,  ps ,  ch )  <->  ( ( ps  /\  ch )  \/ if- ( ph ,  ps ,  ch )
) ) )
42, 3mpbi 220 . 2  |-  (if- (
ph ,  ps ,  ch )  <->  ( ( ps 
/\  ch )  \/ if- ( ph ,  ps ,  ch ) ) )
51, 4bitr4i 267 1  |-  ( (if- ( ph ,  ps ,  ch )  \/  ( ps  /\  ch ) )  <-> if- ( ph ,  ps ,  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384  if-wif 1012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator