Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-csbprc Structured version   Visualization version   Unicode version

Theorem bj-csbprc 32904
Description: More direct proof of csbprc 3980 (fewer essential steps). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-csbprc  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )

Proof of Theorem bj-csbprc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3534 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 sbcex 3445 . . . . 5  |-  ( [. A  /  x ]. y  e.  B  ->  A  e. 
_V )
32con3i 150 . . . 4  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. y  e.  B
)
43alrimiv 1855 . . 3  |-  ( -.  A  e.  _V  ->  A. y  -.  [. A  /  x ]. y  e.  B )
5 bj-ab0 32902 . . 3  |-  ( A. y  -.  [. A  /  x ]. y  e.  B  ->  { y  |  [. A  /  x ]. y  e.  B }  =  (/) )
64, 5syl 17 . 2  |-  ( -.  A  e.  _V  ->  { y  |  [. A  /  x ]. y  e.  B }  =  (/) )
71, 6syl5eq 2668 1  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ B  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   [.wsbc 3435   [_csb 3533   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator