Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-currypeirce Structured version   Visualization version   Unicode version

Theorem bj-currypeirce 32544
Description: Curry's axiom (a non-intuitionistic statement sometimes called a paradox of material implication) implies Peirce's axiom peirce 193 over minimal implicational calculus and the axiomatic definition of disjunction (olc 399, orc 400, jao 534). A shorter proof from bj-orim2 32541, pm1.2 535, syl6com 37 is possible if we accept to use pm1.2 535, itself a direct consequence of jao 534. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-currypeirce  |-  ( (
ph  \/  ( ph  ->  ps ) )  -> 
( ( ( ph  ->  ps )  ->  ph )  ->  ph ) )

Proof of Theorem bj-currypeirce
StepHypRef Expression
1 olc 399 . . 3  |-  ( ph  ->  ( ph  \/  ph ) )
21imim2i 16 . . 3  |-  ( ( ( ph  ->  ps )  ->  ph )  ->  (
( ph  ->  ps )  ->  ( ph  \/  ph ) ) )
3 jao 534 . . 3  |-  ( (
ph  ->  ( ph  \/  ph ) )  ->  (
( ( ph  ->  ps )  ->  ( ph  \/  ph ) )  -> 
( ( ph  \/  ( ph  ->  ps )
)  ->  ( ph  \/  ph ) ) ) )
41, 2, 3mpsyl 68 . 2  |-  ( ( ( ph  ->  ps )  ->  ph )  ->  (
( ph  \/  ( ph  ->  ps ) )  ->  ( ph  \/  ph ) ) )
5 id 22 . . 3  |-  ( ph  ->  ph )
6 jao 534 . . 3  |-  ( (
ph  ->  ph )  ->  (
( ph  ->  ph )  ->  ( ( ph  \/  ph )  ->  ph ) ) )
75, 5, 6mp2 9 . 2  |-  ( (
ph  \/  ph )  ->  ph )
84, 7syl6com 37 1  |-  ( (
ph  \/  ( ph  ->  ps ) )  -> 
( ( ( ph  ->  ps )  ->  ph )  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator