Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-peircecurry Structured version   Visualization version   Unicode version

Theorem bj-peircecurry 32545
Description: Peirce's axiom peirce 193 implies Curry's axiom over minimal implicational calculus and the axiomatic definition of disjunction (olc 399, orc 400, jao 534). See comment of bj-currypeirce 32544. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-peircecurry  |-  ( ph  \/  ( ph  ->  ps ) )

Proof of Theorem bj-peircecurry
StepHypRef Expression
1 orc 400 . 2  |-  ( ph  ->  ( ph  \/  ( ph  ->  ps ) ) )
2 olc 399 . . 3  |-  ( (
ph  ->  ps )  -> 
( ph  \/  ( ph  ->  ps ) ) )
3 peirce 193 . . . 4  |-  ( ( ( ( ph  \/  ( ph  ->  ps )
)  ->  ph )  -> 
( ph  \/  ( ph  ->  ps ) ) )  ->  ( ph  \/  ( ph  ->  ps ) ) )
4 peirce 193 . . . . 5  |-  ( ( ( ph  ->  ps )  ->  ph )  ->  ph )
5 peirceroll 85 . . . . 5  |-  ( ( ( ( ph  ->  ps )  ->  ph )  ->  ph )  ->  ( ( ( ph  ->  ps )  ->  ( ph  \/  ( ph  ->  ps )
) )  ->  (
( ( ph  \/  ( ph  ->  ps )
)  ->  ph )  ->  ph ) ) )
64, 5ax-mp 5 . . . 4  |-  ( ( ( ph  ->  ps )  ->  ( ph  \/  ( ph  ->  ps )
) )  ->  (
( ( ph  \/  ( ph  ->  ps )
)  ->  ph )  ->  ph ) )
7 peirceroll 85 . . . 4  |-  ( ( ( ( ( ph  \/  ( ph  ->  ps ) )  ->  ph )  ->  ( ph  \/  ( ph  ->  ps ) ) )  ->  ( ph  \/  ( ph  ->  ps ) ) )  -> 
( ( ( (
ph  \/  ( ph  ->  ps ) )  ->  ph )  ->  ph )  ->  ( ( ph  ->  (
ph  \/  ( ph  ->  ps ) ) )  ->  ( ph  \/  ( ph  ->  ps )
) ) ) )
83, 6, 7mpsyl 68 . . 3  |-  ( ( ( ph  ->  ps )  ->  ( ph  \/  ( ph  ->  ps )
) )  ->  (
( ph  ->  ( ph  \/  ( ph  ->  ps ) ) )  -> 
( ph  \/  ( ph  ->  ps ) ) ) )
92, 8ax-mp 5 . 2  |-  ( (
ph  ->  ( ph  \/  ( ph  ->  ps )
) )  ->  ( ph  \/  ( ph  ->  ps ) ) )
101, 9ax-mp 5 1  |-  ( ph  \/  ( ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator