Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfbi5 Structured version   Visualization version   Unicode version

Theorem bj-dfbi5 32559
Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
bj-dfbi5  |-  ( (
ph 
<->  ps )  <->  ( ( ph  \/  ps )  -> 
( ph  /\  ps )
) )

Proof of Theorem bj-dfbi5
StepHypRef Expression
1 orcom 402 . 2  |-  ( ( ( ph  /\  ps )  \/  -.  ( ph  \/  ps ) )  <-> 
( -.  ( ph  \/  ps )  \/  ( ph  /\  ps ) ) )
2 bj-dfbi4 32558 . 2  |-  ( (
ph 
<->  ps )  <->  ( ( ph  /\  ps )  \/ 
-.  ( ph  \/  ps ) ) )
3 imor 428 . 2  |-  ( ( ( ph  \/  ps )  ->  ( ph  /\  ps ) )  <->  ( -.  ( ph  \/  ps )  \/  ( ph  /\  ps ) ) )
41, 2, 33bitr4i 292 1  |-  ( (
ph 
<->  ps )  <->  ( ( ph  \/  ps )  -> 
( ph  /\  ps )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by:  bj-dfbi6  32560
  Copyright terms: Public domain W3C validator