Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfbi6 Structured version   Visualization version   Unicode version

Theorem bj-dfbi6 32560
Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
bj-dfbi6  |-  ( (
ph 
<->  ps )  <->  ( ( ph  \/  ps )  <->  ( ph  /\ 
ps ) ) )

Proof of Theorem bj-dfbi6
StepHypRef Expression
1 bj-dfbi5 32559 . 2  |-  ( (
ph 
<->  ps )  <->  ( ( ph  \/  ps )  -> 
( ph  /\  ps )
) )
2 id 22 . . . 4  |-  ( ( ( ph  \/  ps )  ->  ( ph  /\  ps ) )  ->  (
( ph  \/  ps )  ->  ( ph  /\  ps ) ) )
3 animorr 506 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ph  \/  ps ) )
42, 3impbid1 215 . . 3  |-  ( ( ( ph  \/  ps )  ->  ( ph  /\  ps ) )  ->  (
( ph  \/  ps ) 
<->  ( ph  /\  ps ) ) )
5 biimp 205 . . 3  |-  ( ( ( ph  \/  ps ) 
<->  ( ph  /\  ps ) )  ->  (
( ph  \/  ps )  ->  ( ph  /\  ps ) ) )
64, 5impbii 199 . 2  |-  ( ( ( ph  \/  ps )  ->  ( ph  /\  ps ) )  <->  ( ( ph  \/  ps )  <->  ( ph  /\ 
ps ) ) )
71, 6bitri 264 1  |-  ( (
ph 
<->  ps )  <->  ( ( ph  \/  ps )  <->  ( ph  /\ 
ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator