Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfclel Structured version   Visualization version   Unicode version

Theorem bj-dfclel 32889
Description: Characterization of the elements of a class. Note: cleljust 1998 could be relabeled "clelhyp". (Contributed by BJ, 27-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-dfclel  |-  ( A  e.  B  <->  E. x
( x  =  A  /\  x  e.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem bj-dfclel
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cleljust 1998 . . 3  |-  ( u  e.  v  <->  E. w
( w  =  u  /\  w  e.  v ) )
21gen2 1723 . 2  |-  A. u A. v ( u  e.  v  <->  E. w ( w  =  u  /\  w  e.  v ) )
32bj-df-clel 32888 1  |-  ( A  e.  B  <->  E. x
( x  =  A  /\  x  e.  B
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-clel 2618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator