Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbsb3t Structured version   Visualization version   Unicode version

Theorem bj-hbsb3t 32712
Description: A theorem close to a closed form of hbsb3 2364. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-hbsb3t  |-  ( A. x ( ph  ->  A. y ph )  -> 
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )

Proof of Theorem bj-hbsb3t
StepHypRef Expression
1 spsbim 2394 . 2  |-  ( A. x ( ph  ->  A. y ph )  -> 
( [ y  /  x ] ph  ->  [ y  /  x ] A. y ph ) )
2 hbsb2a 2361 . 2  |-  ( [ y  /  x ] A. y ph  ->  A. x [ y  /  x ] ph )
31, 2syl6 35 1  |-  ( A. x ( ph  ->  A. y ph )  -> 
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  bj-hbsb3  32713  bj-nfs1t  32714
  Copyright terms: Public domain W3C validator