Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-modal5e Structured version   Visualization version   Unicode version

Theorem bj-modal5e 32636
Description: Dual statement of hbe1 2021 (which is the real modal-5 2032). See also axc7 2132 and axc7e 2133. (Contributed by BJ, 21-Dec-2020.)
Assertion
Ref Expression
bj-modal5e  |-  ( E. x A. x ph  ->  A. x ph )

Proof of Theorem bj-modal5e
StepHypRef Expression
1 hbn1 2020 . . 3  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )
2 alnex 1706 . . 3  |-  ( A. x  -.  A. x ph  <->  -. 
E. x A. x ph )
31, 2sylib 208 . 2  |-  ( -. 
A. x ph  ->  -. 
E. x A. x ph )
43con4i 113 1  |-  ( E. x A. x ph  ->  A. x ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-10 2019
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by:  bj-19.41al  32637  bj-sb56  32639
  Copyright terms: Public domain W3C validator