![]() |
Metamath
Proof Explorer Theorem List (p. 327 of 426) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bj-sylgt2 32601 | Uncurried (imported) form of sylgt 1749. (Contributed by BJ, 2-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-exlimh 32602 | Closed form of close to exlimih 2148. (Contributed by BJ, 2-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-exlimh2 32603 | Uncurried (imported) form of bj-exlimh 32602. (Contributed by BJ, 2-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-alrimhi 32604 | An inference associated with sylgt 1749 and bj-exlimh 32602. (Contributed by BJ, 12-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-alexim 32605 | Closed form of aleximi 1759 (with a shorter proof, so aleximi 1759 could be deduced from it -- exim 1761 would have to be proved first, but its proof is shorter (currently almost a subproof of aleximi 1759)). (Contributed by BJ, 8-Nov-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-nexdh 32606 | Closed form of nexdh 1792 (actually, its general instance). (Contributed by BJ, 6-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-nexdh2 32607 | Uncurried (imported) form of bj-nexdh 32606. (Contributed by BJ, 6-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-hbxfrbi 32608 |
Closed form of hbxfrbi 1752. Notes: it is less important than nfbiit 1777; it
requires sp 2053 (unlike nfbiit 1777); there is an obvious version with
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-exlime 32609 |
Variant of exlimih 2148 where the non-freeness of ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-exnalimn 32610 |
A transformation of quantifiers and logical connectives. The general
statement that equs3 1875 proves.
This and the following theorems are the general instances of already
proved theorems. They could be moved to the main part, before ax-5 1839.
I
propose to move to the main part: bj-exnalimn 32610, bj-exalim 32611,
bj-exalimi 32612, bj-exalims 32613, bj-exalimsi 32614, bj-ax12i 32616, bj-ax12wlem 32617,
bj-ax12w 32665, and remove equs3 1875. A new label is needed for bj-ax12i 32616
and label suggestions are welcome for the others. I also propose to
change |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-exalim 32611 | Distributing quantifiers over a double implication. (Contributed by BJ, 8-Nov-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-exalimi 32612 | An inference for distributing quantifiers over a double implication. (Almost) the general statement that speimfw 1876 proves. (Contributed by BJ, 29-Sep-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-exalims 32613 | Distributing quantifiers over a double implication. (Almost) the general statement that spimfw 1878 proves. (Contributed by BJ, 29-Sep-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-exalimsi 32614 | An inference for distributing quantifiers over a double implication. (Almost) the general statement that spimfw 1878 proves. (Contributed by BJ, 29-Sep-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax12ig 32615 | A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i 32616. (Contributed by BJ, 19-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax12i 32616 | A weakening of bj-ax12ig 32615 that is sufficient to prove a weak form of the axiom of substitution ax-12 2047. The general statement of which ax12i 1879 is an instance. (Contributed by BJ, 29-Sep-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax12wlem 32617* | A lemma used to prove a weak version of the axiom of substitution ax-12 2047. (Temporary comment: The general statement that ax12wlem 2009 proves.) (Contributed by BJ, 20-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbjust 32618* | Justification theorem for df-ssb 32620 from Tarski's FOL. (Contributed by BJ, 9-Nov-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | wssb 32619 | Syntax for the substitution of a variable for a variable in a formula. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() | ||
Definition | df-ssb 32620* |
Alternate definition of proper substitution. Note that the occurrences
of a given variable are either all bound (![]() ![]() ![]() ![]() ![]() ![]() ![]() This double level definition will make several proofs using it appear as doubled. Alternately, one could often first prove as a lemma the same theorem with a DV condition on the substitute and the substituted variables, and then prove the original theorem by applying this lemma twice in a row. This definition uses a dummy variable, but the justification theorem, bj-ssbjust 32618, is provable from Tarski's FOL. Once this is proved, more of the fundamental properties of proper substitution will be provable from Tarski's FOL system, sometimes with the help of specialization sp 2053, of the substitution axiom ax-12 2047, and of commutation of quantifiers ax-11 2034; that is, ax-13 2246 will often be avoided. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbim 32621 | Distribute substitution over implication, closed form. Specialization of implication. Uses only ax-1--5. Compare spsbim 2394. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbbi 32622 | Biconditional property for substitution, closed form. Specialization of biconditional. Uses only ax-1--5. Compare spsbbi 2402. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbimi 32623 | Distribute substitution over implication. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbbii 32624 | Biconditional property for substitution. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-alsb 32625 | If a proposition is true for all instances, then it is true for any specific one. Uses only ax-1--5. Compare stdpc4 2353 which uses auxiliary axioms. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-sbex 32626 | If a proposition is true for a specific instance, then there exists an instance such that it is true for it. Uses only ax-1--6. Compare spsbe 1884 which, due to the specific form of df-sb 1881, uses fewer axioms. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbeq 32627* | Substitution in an equality, disjoint variables case. Uses only ax-1--6. It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq 32627 first with a DV on x,t, and then in the general case. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssb0 32628* | Substitution for a variable not occurring in a proposition. See sbf 2380. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbequ 32629 | Equality property for substitution, from Tarski's system. Compare sbequ 2376. (Contributed by BJ, 30-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssblem1 32630* | A lemma for the definiens of df-sb 1881. An instance of sp 2053 proved without it. Note: it has a common subproof with bj-ssbjust 32618. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssblem2 32631* |
An instance of ax-11 2034 proved without it. The converse may not be
provable without ax-11 2034 (since using alcomiw 1971 would require a DV on
![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssb1a 32632* | One direction of a simplified definition of substitution in case of disjoint variables. See bj-ssb1 32633 for the biconditional, which requires ax-11 2034. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssb1 32633* | A simplified definition of substitution in case of disjoint variables. See bj-ssb1a 32632 for the backward implication, which does not require ax-11 2034 (note that here, the version of ax-11 2034 with disjoint setvar metavariables would suffice). Compare sb6 2429. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax12 32634* |
A weaker form of ax-12 2047 and ax12v2 2049, namely the generalization over
![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax12ssb 32635* | The axiom bj-ax12 32634 expressed using substitution. (Contributed by BJ, 26-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-modal5e 32636 | Dual statement of hbe1 2021 (which is the real modal-5 2032). See also axc7 2132 and axc7e 2133. (Contributed by BJ, 21-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-19.41al 32637 | Special case of 19.41 2103 proved from Tarski, ax-10 2019 (modal5) and hba1 2151 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-equsexval 32638* | Special case of equsexv 2109 proved from Tarski, ax-10 2019 (modal5) and hba1 2151 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-sb56 32639* | Proof of sb56 2150 from Tarski, ax-10 2019 (modal5) and bj-ax12 32634. (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-dfssb2 32640* | An alternate definition of df-ssb 32620. Note that the use of a dummy variable in the definition df-ssb 32620 allows to use bj-sb56 32639 instead of equs45f 2350 and hence to avoid dependency on ax-13 2246 and to use ax-12 2047 only through bj-ax12 32634. Compare dfsb7 2455. (Contributed by BJ, 25-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbn 32641 | The result of a substitution in the negation of a formula is the negation of the result of the same substitution in that formula. Proved from Tarski, ax-10 2019, bj-ax12 32634. Compare sbn 2391. (Contributed by BJ, 25-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbft 32642 | See sbft 2379. This proof is from Tarski's FOL together with sp 2053 (and its dual). (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbequ2 32643 | Note that ax-12 2047 is used only via sp 2053. See sbequ2 1882 and stdpc7 1958. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbequ1 32644 |
This uses ax-12 2047 with a direct reference to ax12v 2048. Therefore,
compared to bj-ax12 32634, there is a hidden use of sp 2053.
Note that with
ax-12 2047, it can be proved with dv condition on ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbid2 32645 | A special case of bj-ssbequ2 32643. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbid2ALT 32646 | Alternate proof of bj-ssbid2 32645, not using bj-ssbequ2 32643. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbid1 32647 | A special case of bj-ssbequ1 32644. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbid1ALT 32648 | Alternate proof of bj-ssbid1 32647, not using bj-ssbequ1 32644. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbssblem 32649* | Composition of two substitutions with a fresh intermediate variable. Remark: does not seem useful. (Contributed by BJ, 22-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ssbcom3lem 32650* | Lemma for bj-ssbcom3 when setvar variables are disjoint. Remark: does not seem useful. (Contributed by BJ, 30-Dec-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax6elem1 32651* | Lemma for bj-ax6e 32653. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax6elem2 32652* | Lemma for bj-ax6e 32653. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax6e 32653 | Proof of ax6e 2250 (hence ax6 2251) from Tarski's system, ax-c9 34175, ax-c16 34177. Remark: ax-6 1888 is used only via its principal (unbundled) instance ax6v 1889. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-extru 32654 |
There exists a variable such that ![]() |
![]() ![]() ![]() ![]() | ||
Theorem | bj-alequexv 32655* | Version of bj-alequex 32708 with DV(x,y), requiring fewer axioms. (Contributed by BJ, 9-Nov-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-spimvwt 32656* | Closed form of spimvw 1927. See also spimt 2253. (Contributed by BJ, 8-Nov-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-spimevw 32657* | Existential introduction, using implicit substitution. This is to spimeh 1925 what spimvw 1927 is to spimw 1926. (Contributed by BJ, 17-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-spnfw 32658 | Theorem close to a closed form of spnfw 1928. (Contributed by BJ, 12-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-cbvexiw 32659* | Change bound variable. This is to cbvexvw 1970 what cbvaliw 1933 is to cbvalvw 1969. [TODO: move after cbvalivw 1934]. (Contributed by BJ, 17-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-cbvexivw 32660* | Change bound variable. This is to cbvexvw 1970 what cbvalivw 1934 is to cbvalvw 1969. [TODO: move after cbvalivw 1934]. (Contributed by BJ, 17-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-modald 32661 | A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-denot 32662* | A weakening of ax-6 1888 and ax6v 1889. (Contributed by BJ, 4-Apr-2021.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-eqs 32663* |
A lemma for substitutions, proved from Tarski's FOL. The version without
DV(![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-cbvexw 32664* | Change bound variable. This is to cbvexvw 1970 what cbvalw 1968 is to cbvalvw 1969. (Contributed by BJ, 17-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax12w 32665* | The general statement that ax12w 2010 proves. (Contributed by BJ, 20-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-elequ2g 32666* | A form of elequ2 2004 with a universal quantifier. Its converse is ax-ext 2602. (TODO: move to main part, minimize axext4 2606--- as of 4-Nov-2020, minimizes only axext4 2606, by 13 bytes; and link to it in the comment of ax-ext 2602.) (Contributed by BJ, 3-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax89 32667 | A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 1992 and ax-9 1999. Indeed, it is implied over propositional calculus by the conjunction of ax-8 1992 and ax-9 1999, as proved here. In the other direction, one can prove ax-8 1992 (respectively ax-9 1999) from bj-ax89 32667 by using mpan2 707 ( respectively mpan 706) and equid 1939. (TODO: move to main part.) (Contributed by BJ, 3-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-elequ12 32668 | An identity law for the non-logical predicate, which combines elequ1 1997 and elequ2 2004. For the analogous theorems for class terms, see eleq1 2689, eleq2 2690 and eleq12 2691. (TODO: move to main part.) (Contributed by BJ, 29-Sep-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-cleljusti 32669* | One direction of cleljust 1998, requiring only ax-1 6-- ax-5 1839 and ax8v1 1994. (Contributed by BJ, 31-Dec-2020.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-alcomexcom 32670 | Commutation of universal quantifiers implies commutation of existential quantifiers. Can be placed in the ax-4 1737 section, soon after 2nexaln 1757, and used to prove excom 2042. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-hbalt 32671 | Closed form of hbal 2036. When in main part, prove hbal 2036 and hbald 2041 from it. (Contributed by BJ, 2-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axc11n11 32672 | Proof of axc11n 2307 from { ax-1 6-- ax-7 1935, axc11 2314 } . Almost identical to axc11nfromc11 34211. (Contributed by NM, 6-Jul-2021.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axc11n11r 32673 |
Proof of axc11n 2307 from { ax-1 6--
ax-7 1935, axc9 2302, axc11r 2187 } (note
that axc16 2135 is provable from { ax-1 6--
ax-7 1935, axc11r 2187 }).
Note that axc11n 2307 proves (over minimal calculus) that axc11 2314 and axc11r 2187 are equivalent. Therefore, axc11n11 32672 and axc11n11r 32673 prove that one can use one or the other as an axiom, provided one assumes the axioms listed above (axc11 2314 appears slightly stronger since axc11n11r 32673 requires axc9 2302 while axc11n11 32672 does not). (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-axc16g16 32674* | Proof of axc16g 2134 from { ax-1 6-- ax-7 1935, axc16 2135 }. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax12v3 32675* |
A weak version of ax-12 2047 which is stronger than ax12v 2048. Note that if
one assumes reflexivity of equality ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-ax12v3ALT 32676* | Alternate proof of bj-ax12v3 32675. Uses axc11r 2187 and axc15 2303 instead of ax-12 2047. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-sb 32677* | A weak variant of sbid2 2413 not requiring ax-13 2246 nor ax-10 2019. On top of Tarski's FOL, one implication requires only ax12v 2048, and the other requires only sp 2053. (Contributed by BJ, 25-May-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-modalbe 32678 | The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 2142. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-spst 32679 | Closed form of sps 2055. Once in main part, prove sps 2055 and spsd 2057 from it. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-19.21bit 32680 | Closed form of 19.21bi 2059. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-19.23bit 32681 | Closed form of 19.23bi 2061. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-nexrt 32682 | Closed form of nexr 2062. Contrapositive of 19.8a 2052. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-alrim 32683 | Closed form of alrimi 2082. (Contributed by BJ, 2-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-alrim2 32684 | Uncurried (imported) form of bj-alrim 32683. (Contributed by BJ, 2-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-nfdt0 32685 | A theorem close to a closed form of nf5d 2118 and nf5dh 2026. (Contributed by BJ, 2-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-nfdt 32686 | Closed form of nf5d 2118 and nf5dh 2026. (Contributed by BJ, 2-May-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-nexdt 32687 | Closed form of nexd 2089. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-nexdvt 32688* | Closed form of nexdv 1864. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-19.3t 32689 | Closed form of 19.3 2069. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-alexbiex 32690 |
Adding a second quantifier is a tranparent operation, (![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-exexbiex 32691 |
Adding a second quantifier is a tranparent operation, (![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-alalbial 32692 |
Adding a second quantifier is a tranparent operation, (![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-exalbial 32693 |
Adding a second quantifier is a tranparent operation, (![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-19.9htbi 32694 | Strengthening 19.9ht 2143 by replacing its succedent with a biconditional (19.9t 2071 does have a biconditional succedent). This propagates. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-hbntbi 32695 | Strengthening hbnt 2144 by replacing its succedent with a biconditional. See also hbntg 31711 and hbntal 38769. (Contributed by BJ, 20-Oct-2019.) Proved from bj-19.9htbi 32694. (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-biexal1 32696 | A general FOL biconditional that generalizes 19.9ht 2143 among others. For this and the following theorems, see also 19.35 1805, 19.21 2075, 19.23 2080. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-biexal2 32697 | A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-biexal3 32698 | A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-bialal 32699 | A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bj-biexex 32700 | A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |