HomeHome Metamath Proof Explorer
Theorem List (p. 327 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 32601-32700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-sylgt2 32601 Uncurried (imported) form of sylgt 1749. (Contributed by BJ, 2-May-2019.)
 |-  (
 ( A. x ( ps 
 ->  ch )  /\  ( ph  ->  A. x ps )
 )  ->  ( ph  ->  A. x ch )
 )
 
Theorembj-exlimh 32602 Closed form of close to exlimih 2148. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x ( ph  ->  ps )  ->  ( ( E. x ps  ->  ch )  ->  ( E. x ph  ->  ch ) ) )
 
Theorembj-exlimh2 32603 Uncurried (imported) form of bj-exlimh 32602. (Contributed by BJ, 2-May-2019.)
 |-  (
 ( A. x ( ph  ->  ps )  /\  ( E. x ps  ->  ch )
 )  ->  ( E. x ph  ->  ch )
 )
 
Theorembj-alrimhi 32604 An inference associated with sylgt 1749 and bj-exlimh 32602. (Contributed by BJ, 12-May-2019.)
 |-  ( ph  ->  ps )   =>    |-  ( F/ x ph  ->  ( E. x ph  ->  A. x ps )
 )
 
Theorembj-alexim 32605 Closed form of aleximi 1759 (with a shorter proof, so aleximi 1759 could be deduced from it -- exim 1761 would have to be proved first, but its proof is shorter (currently almost a subproof of aleximi 1759)). (Contributed by BJ, 8-Nov-2021.)
 |-  ( A. x ( ph  ->  ( ps  ->  ch )
 )  ->  ( A. x ph  ->  ( E. x ps  ->  E. x ch ) ) )
 
Theorembj-nexdh 32606 Closed form of nexdh 1792 (actually, its general instance). (Contributed by BJ, 6-May-2019.)
 |-  ( A. x ( ph  ->  -. 
 ps )  ->  (
 ( ch  ->  A. x ph )  ->  ( ch  ->  -.  E. x ps ) ) )
 
Theorembj-nexdh2 32607 Uncurried (imported) form of bj-nexdh 32606. (Contributed by BJ, 6-May-2019.)
 |-  (
 ( A. x ( ph  ->  -.  ps )  /\  ( ch  ->  A. x ph ) )  ->  ( ch 
 ->  -.  E. x ps ) )
 
Theorembj-hbxfrbi 32608 Closed form of hbxfrbi 1752. Notes: it is less important than nfbiit 1777; it requires sp 2053 (unlike nfbiit 1777); there is an obvious version with  ( E. x ph  ->  ph ) instead. (Contributed by BJ, 6-May-2019.)
 |-  ( A. x ( ph  <->  ps )  ->  (
 ( ph  ->  A. x ph )  <->  ( ps  ->  A. x ps ) ) )
 
Theorembj-exlime 32609 Variant of exlimih 2148 where the non-freeness of  x in  ps is expressed using an existential quantifier, thus requiring fewer axioms. (Contributed by BJ, 17-Mar-2020.)
 |-  ( E. x ps  ->  ps )   &    |-  ( ph  ->  ps )   =>    |-  ( E. x ph  ->  ps )
 
Theorembj-exnalimn 32610 A transformation of quantifiers and logical connectives. The general statement that equs3 1875 proves.

This and the following theorems are the general instances of already proved theorems. They could be moved to the main part, before ax-5 1839. I propose to move to the main part: bj-exnalimn 32610, bj-exalim 32611, bj-exalimi 32612, bj-exalims 32613, bj-exalimsi 32614, bj-ax12i 32616, bj-ax12wlem 32617, bj-ax12w 32665, and remove equs3 1875. A new label is needed for bj-ax12i 32616 and label suggestions are welcome for the others. I also propose to change  -.  A. x -. to  E. x in speimfw 1876 and spimfw 1878 (other spim* theorems use  E. x and very few theorems in set.mm use  -.  A. x -.). (Contributed by BJ, 29-Sep-2019.)

 |-  ( E. x ( ph  /\  ps ) 
 <->  -.  A. x (
 ph  ->  -.  ps )
 )
 
Theorembj-exalim 32611 Distributing quantifiers over a double implication. (Contributed by BJ, 8-Nov-2021.)
 |-  ( A. x ( ph  ->  ( ps  ->  ch )
 )  ->  ( E. x ph  ->  ( A. x ps  ->  E. x ch ) ) )
 
Theorembj-exalimi 32612 An inference for distributing quantifiers over a double implication. (Almost) the general statement that speimfw 1876 proves. (Contributed by BJ, 29-Sep-2019.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( E. x ph  ->  ( A. x ps  ->  E. x ch )
 )
 
Theorembj-exalims 32613 Distributing quantifiers over a double implication. (Almost) the general statement that spimfw 1878 proves. (Contributed by BJ, 29-Sep-2019.)
 |-  ( E. x ph  ->  ( -.  ch  ->  A. x  -.  ch ) )   =>    |-  ( A. x (
 ph  ->  ( ps  ->  ch ) )  ->  ( E. x ph  ->  ( A. x ps  ->  ch )
 ) )
 
Theorembj-exalimsi 32614 An inference for distributing quantifiers over a double implication. (Almost) the general statement that spimfw 1878 proves. (Contributed by BJ, 29-Sep-2019.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( E. x ph 
 ->  ( -.  ch  ->  A. x  -.  ch )
 )   =>    |-  ( E. x ph  ->  ( A. x ps  ->  ch ) )
 
Theorembj-ax12ig 32615 A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i 32616. (Contributed by BJ, 19-Dec-2020.)
 |-  ( ph  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ( ch  ->  A. x ch ) )   =>    |-  ( ph  ->  ( ps  ->  A. x ( ph  ->  ps ) ) )
 
Theorembj-ax12i 32616 A weakening of bj-ax12ig 32615 that is sufficient to prove a weak form of the axiom of substitution ax-12 2047. The general statement of which ax12i 1879 is an instance. (Contributed by BJ, 29-Sep-2019.)
 |-  ( ph  ->  ( ps  <->  ch ) )   &    |-  ( ch  ->  A. x ch )   =>    |-  ( ph  ->  ( ps  ->  A. x ( ph  ->  ps ) ) )
 
20.14.4.3  Adding ax-5
 
Theorembj-ax12wlem 32617* A lemma used to prove a weak version of the axiom of substitution ax-12 2047. (Temporary comment: The general statement that ax12wlem 2009 proves.) (Contributed by BJ, 20-Mar-2020.)
 |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  A. x (
 ph  ->  ps ) ) )
 
20.14.4.4  Equality and substitution
 
Theorembj-ssbjust 32618* Justification theorem for df-ssb 32620 from Tarski's FOL. (Contributed by BJ, 9-Nov-2021.)
 |-  ( A. y ( y  =  t  ->  A. x ( x  =  y  ->  ph ) )  <->  A. z ( z  =  t  ->  A. x ( x  =  z  -> 
 ph ) ) )
 
Syntaxwssb 32619 Syntax for the substitution of a variable for a variable in a formula. (Contributed by BJ, 22-Dec-2020.)
 wff [ t/ x]b ph
 
Definitiondf-ssb 32620* Alternate definition of proper substitution. Note that the occurrences of a given variable are either all bound ( x ,  y) or all free ( t). Also note that the definiens uses only primitive symbols. It is obtained by applying twice Tarski's definition sb6 2429 which is valid for disjoint variables, so we introduce a dummy variable  y to isolate  x from  t, as in dfsb7 2455 with respect to sb5 2430.

This double level definition will make several proofs using it appear as doubled. Alternately, one could often first prove as a lemma the same theorem with a DV condition on the substitute and the substituted variables, and then prove the original theorem by applying this lemma twice in a row.

This definition uses a dummy variable, but the justification theorem, bj-ssbjust 32618, is provable from Tarski's FOL.

Once this is proved, more of the fundamental properties of proper substitution will be provable from Tarski's FOL system, sometimes with the help of specialization sp 2053, of the substitution axiom ax-12 2047, and of commutation of quantifiers ax-11 2034; that is, ax-13 2246 will often be avoided. (Contributed by BJ, 22-Dec-2020.)

 |-  ([ t/ x]b ph  <->  A. y ( y  =  t  ->  A. x ( x  =  y  -> 
 ph ) ) )
 
Theorembj-ssbim 32621 Distribute substitution over implication, closed form. Specialization of implication. Uses only ax-1--5. Compare spsbim 2394. (Contributed by BJ, 22-Dec-2020.)
 |-  ( A. x ( ph  ->  ps )  ->  ([ t/ x]b ph  -> [ t/ x]b ps ) )
 
Theorembj-ssbbi 32622 Biconditional property for substitution, closed form. Specialization of biconditional. Uses only ax-1--5. Compare spsbbi 2402. (Contributed by BJ, 22-Dec-2020.)
 |-  ( A. x ( ph  <->  ps )  ->  ([ t/ x]b ph  <-> [ t/ x]b ps )
 )
 
Theorembj-ssbimi 32623 Distribute substitution over implication. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.)
 |-  ( ph  ->  ps )   =>    |-  ([ t/ x]b ph  -> [ t/ x]b ps )
 
Theorembj-ssbbii 32624 Biconditional property for substitution. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.)
 |-  ( ph 
 <->  ps )   =>    |-  ([ t/ x]b ph  <-> [ t/ x]b ps )
 
Theorembj-alsb 32625 If a proposition is true for all instances, then it is true for any specific one. Uses only ax-1--5. Compare stdpc4 2353 which uses auxiliary axioms. (Contributed by BJ, 22-Dec-2020.)
 |-  ( A. x ph  -> [ t/ x]b ph )
 
Theorembj-sbex 32626 If a proposition is true for a specific instance, then there exists an instance such that it is true for it. Uses only ax-1--6. Compare spsbe 1884 which, due to the specific form of df-sb 1881, uses fewer axioms. (Contributed by BJ, 22-Dec-2020.)
 |-  ([ t/ x]b ph  ->  E. x ph )
 
Theorembj-ssbeq 32627* Substitution in an equality, disjoint variables case. Uses only ax-1--6. It might be shorter to prove the result about composition of two substitutions and prove bj-ssbeq 32627 first with a DV on x,t, and then in the general case. (Contributed by BJ, 22-Dec-2020.)
 |-  ([ t/ x]b y  =  z  <-> 
 y  =  z )
 
Theorembj-ssb0 32628* Substitution for a variable not occurring in a proposition. See sbf 2380. (Contributed by BJ, 22-Dec-2020.)
 |-  ([ t/ x]b ph  <->  ph )
 
Theorembj-ssbequ 32629 Equality property for substitution, from Tarski's system. Compare sbequ 2376. (Contributed by BJ, 30-Dec-2020.)
 |-  (
 s  =  t  ->  ([ s/ x]b ph  <-> [ t/ x]b ph )
 )
 
Theorembj-ssblem1 32630* A lemma for the definiens of df-sb 1881. An instance of sp 2053 proved without it. Note: it has a common subproof with bj-ssbjust 32618. (Contributed by BJ, 22-Dec-2020.)
 |-  ( A. y ( y  =  t  ->  A. x ( x  =  y  ->  ph ) )  ->  (
 y  =  t  ->  A. x ( x  =  y  ->  ph ) ) )
 
Theorembj-ssblem2 32631* An instance of ax-11 2034 proved without it. The converse may not be provable without ax-11 2034 (since using alcomiw 1971 would require a DV on  ph ,  x, which defeats the purpose). (Contributed by BJ, 22-Dec-2020.)
 |-  ( A. x A. y ( y  =  t  ->  ( x  =  y  -> 
 ph ) )  ->  A. y A. x ( y  =  t  ->  ( x  =  y  -> 
 ph ) ) )
 
Theorembj-ssb1a 32632* One direction of a simplified definition of substitution in case of disjoint variables. See bj-ssb1 32633 for the biconditional, which requires ax-11 2034. (Contributed by BJ, 22-Dec-2020.)
 |-  ( A. x ( x  =  t  ->  ph )  -> [ t/ x]b ph )
 
Theorembj-ssb1 32633* A simplified definition of substitution in case of disjoint variables. See bj-ssb1a 32632 for the backward implication, which does not require ax-11 2034 (note that here, the version of ax-11 2034 with disjoint setvar metavariables would suffice). Compare sb6 2429. (Contributed by BJ, 22-Dec-2020.)
 |-  ([ t/ x]b ph  <->  A. x ( x  =  t  ->  ph )
 )
 
Theorembj-ax12 32634* A weaker form of ax-12 2047 and ax12v2 2049, namely the generalization over  x of the latter. In this statement, all occurrences of  x are bound. (Contributed by BJ, 26-Dec-2020.)
 |-  A. x ( x  =  t  ->  ( ph  ->  A. x ( x  =  t  -> 
 ph ) ) )
 
Theorembj-ax12ssb 32635* The axiom bj-ax12 32634 expressed using substitution. (Contributed by BJ, 26-Dec-2020.)
 |- [ t/ x]b ( ph  -> [ t/ x]b ph )
 
Theorembj-modal5e 32636 Dual statement of hbe1 2021 (which is the real modal-5 2032). See also axc7 2132 and axc7e 2133. (Contributed by BJ, 21-Dec-2020.)
 |-  ( E. x A. x ph  ->  A. x ph )
 
Theorembj-19.41al 32637 Special case of 19.41 2103 proved from Tarski, ax-10 2019 (modal5) and hba1 2151 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
 |-  ( E. x ( ph  /\  A. x ps )  <->  ( E. x ph 
 /\  A. x ps )
 )
 
Theorembj-equsexval 32638* Special case of equsexv 2109 proved from Tarski, ax-10 2019 (modal5) and hba1 2151 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
 |-  ( x  =  y  ->  (
 ph 
 <-> 
 A. x ps )
 )   =>    |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ps )
 
Theorembj-sb56 32639* Proof of sb56 2150 from Tarski, ax-10 2019 (modal5) and bj-ax12 32634. (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
 |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
 
Theorembj-dfssb2 32640* An alternate definition of df-ssb 32620. Note that the use of a dummy variable in the definition df-ssb 32620 allows to use bj-sb56 32639 instead of equs45f 2350 and hence to avoid dependency on ax-13 2246 and to use ax-12 2047 only through bj-ax12 32634. Compare dfsb7 2455. (Contributed by BJ, 25-Dec-2020.)
 |-  ([ t/ x]b ph  <->  E. y ( y  =  t  /\  E. x ( x  =  y  /\  ph )
 ) )
 
Theorembj-ssbn 32641 The result of a substitution in the negation of a formula is the negation of the result of the same substitution in that formula. Proved from Tarski, ax-10 2019, bj-ax12 32634. Compare sbn 2391. (Contributed by BJ, 25-Dec-2020.)
 |-  ([ t/ x]b  -.  ph  <->  -. [ t/ x]b ph )
 
Theorembj-ssbft 32642 See sbft 2379. This proof is from Tarski's FOL together with sp 2053 (and its dual). (Contributed by BJ, 22-Dec-2020.)
 |-  ( F/ x ph  ->  ([ t/ x]b ph  <->  ph ) )
 
Theorembj-ssbequ2 32643 Note that ax-12 2047 is used only via sp 2053. See sbequ2 1882 and stdpc7 1958. (Contributed by BJ, 22-Dec-2020.)
 |-  ( x  =  t  ->  ([ t/ x]b ph  ->  ph ) )
 
Theorembj-ssbequ1 32644 This uses ax-12 2047 with a direct reference to ax12v 2048. Therefore, compared to bj-ax12 32634, there is a hidden use of sp 2053. Note that with ax-12 2047, it can be proved with dv condition on  x ,  t. See sbequ1 2110. (Contributed by BJ, 22-Dec-2020.)
 |-  ( x  =  t  ->  (
 ph  -> [ t/ x]b ph ) )
 
Theorembj-ssbid2 32645 A special case of bj-ssbequ2 32643. (Contributed by BJ, 22-Dec-2020.)
 |-  ([ x/ x]b ph  ->  ph )
 
Theorembj-ssbid2ALT 32646 Alternate proof of bj-ssbid2 32645, not using bj-ssbequ2 32643. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ([ x/ x]b ph  ->  ph )
 
Theorembj-ssbid1 32647 A special case of bj-ssbequ1 32644. (Contributed by BJ, 22-Dec-2020.)
 |-  ( ph  -> [ x/ x]b ph )
 
Theorembj-ssbid1ALT 32648 Alternate proof of bj-ssbid1 32647, not using bj-ssbequ1 32644. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  -> [ x/ x]b ph )
 
Theorembj-ssbssblem 32649* Composition of two substitutions with a fresh intermediate variable. Remark: does not seem useful. (Contributed by BJ, 22-Dec-2020.)
 |-  ([ t/ y]b[ y/ x]b ph  <-> [ t/ x]b ph )
 
Theorembj-ssbcom3lem 32650* Lemma for bj-ssbcom3 when setvar variables are disjoint. Remark: does not seem useful. (Contributed by BJ, 30-Dec-2020.)
 |-  ([ t/ y]b[ y/ x]b ph  <-> [ t/ y]b[ t/ x]b ph )
 
Theorembj-ax6elem1 32651* Lemma for bj-ax6e 32653. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
 |-  ( -.  A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
 )
 
Theorembj-ax6elem2 32652* Lemma for bj-ax6e 32653. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
 |-  ( A. x  y  =  z  ->  E. x  x  =  y )
 
Theorembj-ax6e 32653 Proof of ax6e 2250 (hence ax6 2251) from Tarski's system, ax-c9 34175, ax-c16 34177. Remark: ax-6 1888 is used only via its principal (unbundled) instance ax6v 1889. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  E. x  x  =  y
 
20.14.4.5  Adding ax-6
 
Theorembj-extru 32654 There exists a variable such that T. holds; that is, there exists a variable. This corresponds under the standard translation to one of the formulations of the modal axiom (D), the other being 19.2 1892. (This is also extt 32403; propose to move to Main extt 32403 and allt 32400; relabel exiftru 1891 to "exgen", for "existential generalization", which is the standard name for that rule of inference ? ). (Contributed by BJ, 12-May-2019.) (Proof modification is discouraged.)
 |-  E. x T.
 
Theorembj-alequexv 32655* Version of bj-alequex 32708 with DV(x,y), requiring fewer axioms. (Contributed by BJ, 9-Nov-2021.)
 |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ph )
 
Theorembj-spimvwt 32656* Closed form of spimvw 1927. See also spimt 2253. (Contributed by BJ, 8-Nov-2021.)
 |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  ->  ( A. x ph  ->  ps ) )
 
Theorembj-spimevw 32657* Existential introduction, using implicit substitution. This is to spimeh 1925 what spimvw 1927 is to spimw 1926. (Contributed by BJ, 17-Mar-2020.)
 |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( ph  ->  E. x ps )
 
Theorembj-spnfw 32658 Theorem close to a closed form of spnfw 1928. (Contributed by BJ, 12-May-2019.)
 |-  (
 ( E. x ph  ->  ps )  ->  ( A. x ph  ->  ps )
 )
 
Theorembj-cbvexiw 32659* Change bound variable. This is to cbvexvw 1970 what cbvaliw 1933 is to cbvalvw 1969. [TODO: move after cbvalivw 1934]. (Contributed by BJ, 17-Mar-2020.)
 |-  ( E. x E. y ps 
 ->  E. y ps )   &    |-  ( ph  ->  A. y ph )   &    |-  (
 y  =  x  ->  ( ph  ->  ps )
 )   =>    |-  ( E. x ph  ->  E. y ps )
 
Theorembj-cbvexivw 32660* Change bound variable. This is to cbvexvw 1970 what cbvalivw 1934 is to cbvalvw 1969. [TODO: move after cbvalivw 1934]. (Contributed by BJ, 17-Mar-2020.)
 |-  (
 y  =  x  ->  ( ph  ->  ps )
 )   =>    |-  ( E. x ph  ->  E. y ps )
 
Theorembj-modald 32661 A short form of the axiom D of modal logic. (Contributed by BJ, 4-Apr-2021.)
 |-  ( A. x  -.  ph  ->  -. 
 A. x ph )
 
Theorembj-denot 32662* A weakening of ax-6 1888 and ax6v 1889. (Contributed by BJ, 4-Apr-2021.) (New usage is discouraged.)
 |-  ( x  =  x  ->  -. 
 A. y  -.  y  =  x )
 
Theorembj-eqs 32663* A lemma for substitutions, proved from Tarski's FOL. The version without DV( x,  y) is true but requires ax-13 2246. The DV condition DV(  x,  ph) is necessary for both directions: consider substituting  x  =  z for  ph. (Contributed by BJ, 25-May-2021.)
 |-  ( ph 
 <-> 
 A. x ( x  =  y  ->  ph )
 )
 
20.14.4.6  Adding ax-7
 
Theorembj-cbvexw 32664* Change bound variable. This is to cbvexvw 1970 what cbvalw 1968 is to cbvalvw 1969. (Contributed by BJ, 17-Mar-2020.)
 |-  ( E. x E. y ps 
 ->  E. y ps )   &    |-  ( ph  ->  A. y ph )   &    |-  ( E. y E. x ph  ->  E. x ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ph  <->  E. y ps )
 
Theorembj-ax12w 32665* The general statement that ax12w 2010 proves. (Contributed by BJ, 20-Mar-2020.)
 |-  ( ph  ->  ( ps  <->  ch ) )   &    |-  (
 y  =  z  ->  ( ps  <->  th ) )   =>    |-  ( ph  ->  (
 A. y ps  ->  A. x ( ph  ->  ps ) ) )
 
20.14.4.7  Membership predicate, ax-8 and ax-9
 
Theorembj-elequ2g 32666* A form of elequ2 2004 with a universal quantifier. Its converse is ax-ext 2602. (TODO: move to main part, minimize axext4 2606--- as of 4-Nov-2020, minimizes only axext4 2606, by 13 bytes; and link to it in the comment of ax-ext 2602.) (Contributed by BJ, 3-Oct-2019.)
 |-  ( x  =  y  ->  A. z ( z  e.  x  <->  z  e.  y
 ) )
 
Theorembj-ax89 32667 A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 1992 and ax-9 1999. Indeed, it is implied over propositional calculus by the conjunction of ax-8 1992 and ax-9 1999, as proved here. In the other direction, one can prove ax-8 1992 (respectively ax-9 1999) from bj-ax89 32667 by using mpan2 707 ( respectively mpan 706) and equid 1939. (TODO: move to main part.) (Contributed by BJ, 3-Oct-2019.)
 |-  (
 ( x  =  y 
 /\  z  =  t )  ->  ( x  e.  z  ->  y  e.  t ) )
 
Theorembj-elequ12 32668 An identity law for the non-logical predicate, which combines elequ1 1997 and elequ2 2004. For the analogous theorems for class terms, see eleq1 2689, eleq2 2690 and eleq12 2691. (TODO: move to main part.) (Contributed by BJ, 29-Sep-2019.)
 |-  (
 ( x  =  y 
 /\  z  =  t )  ->  ( x  e.  z  <->  y  e.  t
 ) )
 
Theorembj-cleljusti 32669* One direction of cleljust 1998, requiring only ax-1 6-- ax-5 1839 and ax8v1 1994. (Contributed by BJ, 31-Dec-2020.) (Proof modification is discouraged.)
 |-  ( E. z ( z  =  x  /\  z  e.  y )  ->  x  e.  y )
 
20.14.4.8  Adding ax-11
 
Theorembj-alcomexcom 32670 Commutation of universal quantifiers implies commutation of existential quantifiers. Can be placed in the ax-4 1737 section, soon after 2nexaln 1757, and used to prove excom 2042. (Contributed by BJ, 29-Nov-2020.) (Proof modification is discouraged.)
 |-  (
 ( A. x A. y  -.  ph  ->  A. y A. x  -.  ph )  ->  ( E. y E. x ph  ->  E. x E. y ph ) )
 
Theorembj-hbalt 32671 Closed form of hbal 2036. When in main part, prove hbal 2036 and hbald 2041 from it. (Contributed by BJ, 2-May-2019.)
 |-  ( A. y ( ph  ->  A. x ph )  ->  ( A. y ph  ->  A. x A. y ph ) )
 
20.14.4.9  Adding ax-12
 
Theoremaxc11n11 32672 Proof of axc11n 2307 from { ax-1 6-- ax-7 1935, axc11 2314 } . Almost identical to axc11nfromc11 34211. (Contributed by NM, 6-Jul-2021.) (Proof modification is discouraged.)
 |-  ( A. x  x  =  y  ->  A. y  y  =  x )
 
Theoremaxc11n11r 32673 Proof of axc11n 2307 from { ax-1 6-- ax-7 1935, axc9 2302, axc11r 2187 } (note that axc16 2135 is provable from { ax-1 6-- ax-7 1935, axc11r 2187 }).

Note that axc11n 2307 proves (over minimal calculus) that axc11 2314 and axc11r 2187 are equivalent. Therefore, axc11n11 32672 and axc11n11r 32673 prove that one can use one or the other as an axiom, provided one assumes the axioms listed above (axc11 2314 appears slightly stronger since axc11n11r 32673 requires axc9 2302 while axc11n11 32672 does not).

(Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)

 |-  ( A. x  x  =  y  ->  A. y  y  =  x )
 
Theorembj-axc16g16 32674* Proof of axc16g 2134 from { ax-1 6-- ax-7 1935, axc16 2135 }. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)
 |-  ( A. x  x  =  y  ->  ( ph  ->  A. z ph ) )
 
Theorembj-ax12v3 32675* A weak version of ax-12 2047 which is stronger than ax12v 2048. Note that if one assumes reflexivity of equality  |-  x  =  x (equid 1939), then bj-ax12v3 32675 implies ax-5 1839 over modal logic K (substitute  x for  y). See also bj-ax12v3ALT 32676. (Contributed by BJ, 6-Jul-2021.)
 |-  ( x  =  y  ->  (
 ph  ->  A. x ( x  =  y  ->  ph )
 ) )
 
Theorembj-ax12v3ALT 32676* Alternate proof of bj-ax12v3 32675. Uses axc11r 2187 and axc15 2303 instead of ax-12 2047. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( x  =  y  ->  (
 ph  ->  A. x ( x  =  y  ->  ph )
 ) )
 
Theorembj-sb 32677* A weak variant of sbid2 2413 not requiring ax-13 2246 nor ax-10 2019. On top of Tarski's FOL, one implication requires only ax12v 2048, and the other requires only sp 2053. (Contributed by BJ, 25-May-2021.)
 |-  ( ph 
 <-> 
 A. y ( y  =  x  ->  A. x ( x  =  y  -> 
 ph ) ) )
 
Theorembj-modalbe 32678 The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 2142. (Contributed by BJ, 20-Oct-2019.)
 |-  ( ph  ->  A. x E. x ph )
 
Theorembj-spst 32679 Closed form of sps 2055. Once in main part, prove sps 2055 and spsd 2057 from it. (Contributed by BJ, 20-Oct-2019.)
 |-  (
 ( ph  ->  ps )  ->  ( A. x ph  ->  ps ) )
 
Theorembj-19.21bit 32680 Closed form of 19.21bi 2059. (Contributed by BJ, 20-Oct-2019.)
 |-  (
 ( ph  ->  A. x ps )  ->  ( ph  ->  ps ) )
 
Theorembj-19.23bit 32681 Closed form of 19.23bi 2061. (Contributed by BJ, 20-Oct-2019.)
 |-  (
 ( E. x ph  ->  ps )  ->  ( ph  ->  ps ) )
 
Theorembj-nexrt 32682 Closed form of nexr 2062. Contrapositive of 19.8a 2052. (Contributed by BJ, 20-Oct-2019.)
 |-  ( -.  E. x ph  ->  -.  ph )
 
Theorembj-alrim 32683 Closed form of alrimi 2082. (Contributed by BJ, 2-May-2019.)
 |-  ( F/ x ph  ->  ( A. x ( ph  ->  ps )  ->  ( ph  ->  A. x ps )
 ) )
 
Theorembj-alrim2 32684 Uncurried (imported) form of bj-alrim 32683. (Contributed by BJ, 2-May-2019.)
 |-  (
 ( F/ x ph  /\ 
 A. x ( ph  ->  ps ) )  ->  ( ph  ->  A. x ps ) )
 
Theorembj-nfdt0 32685 A theorem close to a closed form of nf5d 2118 and nf5dh 2026. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x ( ph  ->  ( ps  ->  A. x ps ) )  ->  ( A. x ph  ->  F/ x ps ) )
 
Theorembj-nfdt 32686 Closed form of nf5d 2118 and nf5dh 2026. (Contributed by BJ, 2-May-2019.)
 |-  ( A. x ( ph  ->  ( ps  ->  A. x ps ) )  ->  ( (
 ph  ->  A. x ph )  ->  ( ph  ->  F/ x ps ) ) )
 
Theorembj-nexdt 32687 Closed form of nexd 2089. (Contributed by BJ, 20-Oct-2019.)
 |-  ( F/ x ph  ->  ( A. x ( ph  ->  -. 
 ps )  ->  ( ph  ->  -.  E. x ps ) ) )
 
Theorembj-nexdvt 32688* Closed form of nexdv 1864. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( ph  ->  -. 
 ps )  ->  ( ph  ->  -.  E. x ps ) )
 
Theorembj-19.3t 32689 Closed form of 19.3 2069. (Contributed by BJ, 20-Oct-2019.)
 |-  (
 ( ph  ->  A. x ph )  ->  ( A. x ph  <->  ph ) )
 
Theorembj-alexbiex 32690 Adding a second quantifier is a tranparent operation, ( A. E. case). (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x E. x ph  <->  E. x ph )
 
Theorembj-exexbiex 32691 Adding a second quantifier is a tranparent operation, ( E. E. case). (Contributed by BJ, 20-Oct-2019.)
 |-  ( E. x E. x ph  <->  E. x ph )
 
Theorembj-alalbial 32692 Adding a second quantifier is a tranparent operation, ( A. A. case). (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x A. x ph  <->  A. x ph )
 
Theorembj-exalbial 32693 Adding a second quantifier is a tranparent operation, ( E. A. case). (Contributed by BJ, 20-Oct-2019.)
 |-  ( E. x A. x ph  <->  A. x ph )
 
Theorembj-19.9htbi 32694 Strengthening 19.9ht 2143 by replacing its succedent with a biconditional (19.9t 2071 does have a biconditional succedent). This propagates. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( ph  ->  A. x ph )  ->  ( E. x ph  <->  ph ) )
 
Theorembj-hbntbi 32695 Strengthening hbnt 2144 by replacing its succedent with a biconditional. See also hbntg 31711 and hbntal 38769. (Contributed by BJ, 20-Oct-2019.) Proved from bj-19.9htbi 32694. (Proof modification is discouraged.)
 |-  ( A. x ( ph  ->  A. x ph )  ->  ( -.  ph  <->  A. x  -.  ph ) )
 
Theorembj-biexal1 32696 A general FOL biconditional that generalizes 19.9ht 2143 among others. For this and the following theorems, see also 19.35 1805, 19.21 2075, 19.23 2080. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( ph  ->  A. x ps )  <->  ( E. x ph 
 ->  A. x ps )
 )
 
Theorembj-biexal2 32697 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( E. x ph 
 ->  ps )  <->  ( E. x ph 
 ->  A. x ps )
 )
 
Theorembj-biexal3 32698 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( ph  ->  A. x ps )  <->  A. x ( E. x ph  ->  ps )
 )
 
Theorembj-bialal 32699 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( A. x ph 
 ->  ps )  <->  ( A. x ph 
 ->  A. x ps )
 )
 
Theorembj-biexex 32700 A general FOL biconditional. (Contributed by BJ, 20-Oct-2019.)
 |-  ( A. x ( ph  ->  E. x ps )  <->  ( E. x ph 
 ->  E. x ps )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >