Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rexcom4bv Structured version   Visualization version   Unicode version

Theorem bj-rexcom4bv 32871
Description: Version of bj-rexcom4b 32872 with a dv condition on  x ,  V, hence removing dependency on df-sb 1881 and df-clab 2609 (so that it depends on df-clel 2618 and df-rex 2918 only on top of first-order logic). Prefer its use over bj-rexcom4b 32872 when sufficient (in particular when  V is substituted for  _V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-rexcom4bv.1  |-  B  e.  V
Assertion
Ref Expression
bj-rexcom4bv  |-  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  ph )
Distinct variable groups:    x, A    x, B    x, V    x, y    ph, x
Allowed substitution hints:    ph( y)    A( y)    B( y)    V( y)

Proof of Theorem bj-rexcom4bv
StepHypRef Expression
1 bj-rexcom4a 32870 . 2  |-  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  (
ph  /\  E. x  x  =  B )
)
2 bj-rexcom4bv.1 . . . . 5  |-  B  e.  V
32bj-issetiv 32863 . . . 4  |-  E. x  x  =  B
43biantru 526 . . 3  |-  ( ph  <->  (
ph  /\  E. x  x  =  B )
)
54rexbii 3041 . 2  |-  ( E. y  e.  A  ph  <->  E. y  e.  A  (
ph  /\  E. x  x  =  B )
)
61, 5bitr4i 267 1  |-  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-11 2034
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-clel 2618  df-rex 2918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator