Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1142 Structured version   Visualization version   Unicode version

Theorem bnj1142 30860
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1142.1  |-  ( ph  ->  A. x ( x  e.  A  ->  ps ) )
Assertion
Ref Expression
bnj1142  |-  ( ph  ->  A. x  e.  A  ps )

Proof of Theorem bnj1142
StepHypRef Expression
1 bnj1142.1 . 2  |-  ( ph  ->  A. x ( x  e.  A  ->  ps ) )
2 df-ral 2917 . 2  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
31, 2sylibr 224 1  |-  ( ph  ->  A. x  e.  A  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481    e. wcel 1990   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-ral 2917
This theorem is referenced by:  bnj1476  30917  bnj1533  30922  bnj1523  31139
  Copyright terms: Public domain W3C validator