| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cadan | Structured version Visualization version Unicode version | ||
| Description: The adder carry in conjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| cadan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1038 |
. . . 4
| |
| 2 | cador 1547 |
. . . 4
| |
| 3 | andi 911 |
. . . . 5
| |
| 4 | 3 | orbi1i 542 |
. . . 4
|
| 5 | 1, 2, 4 | 3bitr4i 292 |
. . 3
|
| 6 | ordir 909 |
. . 3
| |
| 7 | ordi 908 |
. . . 4
| |
| 8 | orcom 402 |
. . . . 5
| |
| 9 | animorl 505 |
. . . . . 6
| |
| 10 | pm4.72 920 |
. . . . . 6
| |
| 11 | 9, 10 | mpbi 220 |
. . . . 5
|
| 12 | 8, 11 | bitr4i 267 |
. . . 4
|
| 13 | 7, 12 | anbi12i 733 |
. . 3
|
| 14 | 5, 6, 13 | 3bitri 286 |
. 2
|
| 15 | df-3an 1039 |
. 2
| |
| 16 | 14, 15 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-xor 1465 df-cad 1546 |
| This theorem is referenced by: cadcomb 1552 cadnot 1554 cad1 1555 |
| Copyright terms: Public domain | W3C validator |