MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadcomb Structured version   Visualization version   Unicode version

Theorem cadcomb 1552
Description: Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.)
Assertion
Ref Expression
cadcomb  |-  (cadd (
ph ,  ps ,  ch )  <-> cadd ( ph ,  ch ,  ps ) )

Proof of Theorem cadcomb
StepHypRef Expression
1 cadan 1548 . . 3  |-  (cadd (
ph ,  ps ,  ch )  <->  ( ( ph  \/  ps )  /\  ( ph  \/  ch )  /\  ( ps  \/  ch ) ) )
2 3ancoma 1045 . . 3  |-  ( ( ( ph  \/  ps )  /\  ( ph  \/  ch )  /\  ( ps  \/  ch ) )  <-> 
( ( ph  \/  ch )  /\  ( ph  \/  ps )  /\  ( ps  \/  ch ) ) )
3 orcom 402 . . . 4  |-  ( ( ps  \/  ch )  <->  ( ch  \/  ps )
)
433anbi3i 1255 . . 3  |-  ( ( ( ph  \/  ch )  /\  ( ph  \/  ps )  /\  ( ps  \/  ch ) )  <-> 
( ( ph  \/  ch )  /\  ( ph  \/  ps )  /\  ( ch  \/  ps ) ) )
51, 2, 43bitri 286 . 2  |-  (cadd (
ph ,  ps ,  ch )  <->  ( ( ph  \/  ch )  /\  ( ph  \/  ps )  /\  ( ch  \/  ps ) ) )
6 cadan 1548 . 2  |-  (cadd (
ph ,  ch ,  ps )  <->  ( ( ph  \/  ch )  /\  ( ph  \/  ps )  /\  ( ch  \/  ps ) ) )
75, 6bitr4i 267 1  |-  (cadd (
ph ,  ps ,  ch )  <-> cadd ( ph ,  ch ,  ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ w3a 1037  caddwcad 1545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-cad 1546
This theorem is referenced by:  cadrot  1553
  Copyright terms: Public domain W3C validator