| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > camestros | Structured version Visualization version Unicode version | ||
| Description: "Camestros",
one of the syllogisms of Aristotelian logic. All |
| Ref | Expression |
|---|---|
| camestros.maj |
|
| camestros.min |
|
| camestros.e |
|
| Ref | Expression |
|---|---|
| camestros |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | camestros.e |
. 2
| |
| 2 | camestros.min |
. . . . 5
| |
| 3 | 2 | spi 2054 |
. . . 4
|
| 4 | camestros.maj |
. . . . 5
| |
| 5 | 4 | spi 2054 |
. . . 4
|
| 6 | 3, 5 | nsyl 135 |
. . 3
|
| 7 | 6 | ancli 574 |
. 2
|
| 8 | 1, 7 | eximii 1764 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |