MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexv1 Structured version   Visualization version   Unicode version

Theorem cbvexv1 2176
Description: Version of cbvex 2272 with a dv condition, which does not require ax-13 2246. See cbvexvw 1970 for a version with two dv conditions, requiring fewer axioms, and cbvexv 2275 for another variant. (Contributed by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1  |-  F/ y
ph
cbvalv1.nf2  |-  F/ x ps
cbvalv1.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvexv1  |-  ( E. x ph  <->  E. y ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf1 . . . . 5  |-  F/ y
ph
21nfn 1784 . . . 4  |-  F/ y  -.  ph
3 cbvalv1.nf2 . . . . 5  |-  F/ x ps
43nfn 1784 . . . 4  |-  F/ x  -.  ps
5 cbvalv1.1 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
65notbid 308 . . . 4  |-  ( x  =  y  ->  ( -.  ph  <->  -.  ps )
)
72, 4, 6cbvalv1 2175 . . 3  |-  ( A. x  -.  ph  <->  A. y  -.  ps )
87notbii 310 . 2  |-  ( -. 
A. x  -.  ph  <->  -. 
A. y  -.  ps )
9 df-ex 1705 . 2  |-  ( E. x ph  <->  -.  A. x  -.  ph )
10 df-ex 1705 . 2  |-  ( E. y ps  <->  -.  A. y  -.  ps )
118, 9, 103bitr4i 292 1  |-  ( E. x ph  <->  E. y ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  bj-cbvexvv  32734  bj-axrep1  32788  bj-axrep2  32789  bj-axrep4  32791
  Copyright terms: Public domain W3C validator