![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdeqi | Structured version Visualization version Unicode version |
Description: Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
cdeqi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cdeqi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-cdeq 3419 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbir 221 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-cdeq 3419 |
This theorem is referenced by: cdeqth 3422 cdeqnot 3423 cdeqal 3424 cdeqab 3425 cdeqim 3428 cdeqcv 3429 cdeqeq 3430 cdeqel 3431 bj-cdeqab 32787 |
Copyright terms: Public domain | W3C validator |