| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ceqsralv2 | Structured version Visualization version Unicode version | ||
| Description: Alternate elimination of a restricted universal quantifier, using implicit substitution. (Contributed by Scott Fenton, 7-Dec-2020.) |
| Ref | Expression |
|---|---|
| ceqsralv2.1 |
|
| Ref | Expression |
|---|---|
| ceqsralv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsralv2.1 |
. . . . 5
| |
| 2 | 1 | notbid 308 |
. . . 4
|
| 3 | 2 | ceqsrexv2 31605 |
. . 3
|
| 4 | rexanali 2998 |
. . 3
| |
| 5 | annim 441 |
. . 3
| |
| 6 | 3, 4, 5 | 3bitr3i 290 |
. 2
|
| 7 | 6 | con4bii 311 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |