| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dedths | Structured version Visualization version Unicode version | ||
| Description: A version of weak deduction theorem dedth 4139 using explicit substitution. (Contributed by NM, 15-Jun-2019.) |
| Ref | Expression |
|---|---|
| dedths.1 |
|
| Ref | Expression |
|---|---|
| dedths |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 3437 |
. . 3
| |
| 2 | dedths.1 |
. . . 4
| |
| 3 | sbcid 3452 |
. . . . 5
| |
| 4 | ifbi 4107 |
. . . . 5
| |
| 5 | dfsbcq 3437 |
. . . . 5
| |
| 6 | 3, 4, 5 | mp2b 10 |
. . . 4
|
| 7 | 2, 6 | mpbir 221 |
. . 3
|
| 8 | 1, 7 | dedth 4139 |
. 2
|
| 9 | sbcid 3452 |
. 2
| |
| 10 | 8, 3, 9 | 3imtr3i 280 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-sbc 3436 df-if 4087 |
| This theorem is referenced by: renegclALT 34249 |
| Copyright terms: Public domain | W3C validator |