| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-0o | Structured version Visualization version Unicode version | ||
| Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-0o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0o 27598 |
. 2
| |
| 2 | vu |
. . 3
| |
| 3 | vw |
. . 3
| |
| 4 | cnv 27439 |
. . 3
| |
| 5 | 2 | cv 1482 |
. . . . 5
|
| 6 | cba 27441 |
. . . . 5
| |
| 7 | 5, 6 | cfv 5888 |
. . . 4
|
| 8 | 3 | cv 1482 |
. . . . . 6
|
| 9 | cn0v 27443 |
. . . . . 6
| |
| 10 | 8, 9 | cfv 5888 |
. . . . 5
|
| 11 | 10 | csn 4177 |
. . . 4
|
| 12 | 7, 11 | cxp 5112 |
. . 3
|
| 13 | 2, 3, 4, 4, 12 | cmpt2 6652 |
. 2
|
| 14 | 1, 13 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: 0ofval 27642 |
| Copyright terms: Public domain | W3C validator |