MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ofval Structured version   Visualization version   Unicode version

Theorem 0ofval 27642
Description: The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0oval.1  |-  X  =  ( BaseSet `  U )
0oval.6  |-  Z  =  ( 0vec `  W
)
0oval.0  |-  O  =  ( U  0op  W
)
Assertion
Ref Expression
0ofval  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  O  =  ( X  X.  { Z } ) )

Proof of Theorem 0ofval
Dummy variables  w  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0oval.0 . 2  |-  O  =  ( U  0op  W
)
2 fveq2 6191 . . . . 5  |-  ( u  =  U  ->  ( BaseSet
`  u )  =  ( BaseSet `  U )
)
3 0oval.1 . . . . 5  |-  X  =  ( BaseSet `  U )
42, 3syl6eqr 2674 . . . 4  |-  ( u  =  U  ->  ( BaseSet
`  u )  =  X )
54xpeq1d 5138 . . 3  |-  ( u  =  U  ->  (
( BaseSet `  u )  X.  { ( 0vec `  w
) } )  =  ( X  X.  {
( 0vec `  w ) } ) )
6 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  ( 0vec `  w )  =  ( 0vec `  W
) )
7 0oval.6 . . . . . 6  |-  Z  =  ( 0vec `  W
)
86, 7syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  ( 0vec `  w )  =  Z )
98sneqd 4189 . . . 4  |-  ( w  =  W  ->  { (
0vec `  w ) }  =  { Z } )
109xpeq2d 5139 . . 3  |-  ( w  =  W  ->  ( X  X.  { ( 0vec `  w ) } )  =  ( X  X.  { Z } ) )
11 df-0o 27602 . . 3  |-  0op  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec  |->  ( ( BaseSet `  u )  X.  {
( 0vec `  w ) } ) )
12 fvex 6201 . . . . 5  |-  ( BaseSet `  U )  e.  _V
133, 12eqeltri 2697 . . . 4  |-  X  e. 
_V
14 snex 4908 . . . 4  |-  { Z }  e.  _V
1513, 14xpex 6962 . . 3  |-  ( X  X.  { Z }
)  e.  _V
165, 10, 11, 15ovmpt2 6796 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( U  0op  W )  =  ( X  X.  { Z } ) )
171, 16syl5eq 2668 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  O  =  ( X  X.  { Z } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177    X. cxp 5112   ` cfv 5888  (class class class)co 6650   NrmCVeccnv 27439   BaseSetcba 27441   0veccn0v 27443    0op c0o 27598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-0o 27602
This theorem is referenced by:  0oval  27643  0oo  27644  lnon0  27653  blocni  27660  hh0oi  28762
  Copyright terms: Public domain W3C validator