![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-atan | Structured version Visualization version Unicode version |
Description: Define the arctangent
function. See also remarks for df-asin 24592.
Unlike arcsin and arccos, this function is not defined
everywhere, because ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-atan |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catan 24591 |
. 2
![]() | |
2 | vx |
. . 3
![]() ![]() | |
3 | cc 9934 |
. . . 4
![]() ![]() | |
4 | ci 9938 |
. . . . . 6
![]() ![]() | |
5 | 4 | cneg 10267 |
. . . . 5
![]() ![]() ![]() |
6 | 5, 4 | cpr 4179 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 3, 6 | cdif 3571 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | c2 11070 |
. . . . 5
![]() ![]() | |
9 | cdiv 10684 |
. . . . 5
![]() ![]() | |
10 | 4, 8, 9 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
11 | c1 9937 |
. . . . . . 7
![]() ![]() | |
12 | 2 | cv 1482 |
. . . . . . . 8
![]() ![]() |
13 | cmul 9941 |
. . . . . . . 8
![]() ![]() | |
14 | 4, 12, 13 | co 6650 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
15 | cmin 10266 |
. . . . . . 7
![]() ![]() | |
16 | 11, 14, 15 | co 6650 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | clog 24301 |
. . . . . 6
![]() ![]() | |
18 | 16, 17 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | caddc 9939 |
. . . . . . 7
![]() ![]() | |
20 | 11, 14, 19 | co 6650 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20, 17 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 18, 21, 15 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 10, 22, 13 | co 6650 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 2, 7, 23 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 1, 24 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: atandm 24603 atanf 24607 atanval 24611 dvatan 24662 |
Copyright terms: Public domain | W3C validator |