| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-atan | Structured version Visualization version Unicode version | ||
| Description: Define the arctangent
function. See also remarks for df-asin 24592.
Unlike arcsin and arccos, this function is not defined
everywhere, because |
| Ref | Expression |
|---|---|
| df-atan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catan 24591 |
. 2
| |
| 2 | vx |
. . 3
| |
| 3 | cc 9934 |
. . . 4
| |
| 4 | ci 9938 |
. . . . . 6
| |
| 5 | 4 | cneg 10267 |
. . . . 5
|
| 6 | 5, 4 | cpr 4179 |
. . . 4
|
| 7 | 3, 6 | cdif 3571 |
. . 3
|
| 8 | c2 11070 |
. . . . 5
| |
| 9 | cdiv 10684 |
. . . . 5
| |
| 10 | 4, 8, 9 | co 6650 |
. . . 4
|
| 11 | c1 9937 |
. . . . . . 7
| |
| 12 | 2 | cv 1482 |
. . . . . . . 8
|
| 13 | cmul 9941 |
. . . . . . . 8
| |
| 14 | 4, 12, 13 | co 6650 |
. . . . . . 7
|
| 15 | cmin 10266 |
. . . . . . 7
| |
| 16 | 11, 14, 15 | co 6650 |
. . . . . 6
|
| 17 | clog 24301 |
. . . . . 6
| |
| 18 | 16, 17 | cfv 5888 |
. . . . 5
|
| 19 | caddc 9939 |
. . . . . . 7
| |
| 20 | 11, 14, 19 | co 6650 |
. . . . . 6
|
| 21 | 20, 17 | cfv 5888 |
. . . . 5
|
| 22 | 18, 21, 15 | co 6650 |
. . . 4
|
| 23 | 10, 22, 13 | co 6650 |
. . 3
|
| 24 | 2, 7, 23 | cmpt 4729 |
. 2
|
| 25 | 1, 24 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: atandm 24603 atanf 24607 atanval 24611 dvatan 24662 |
| Copyright terms: Public domain | W3C validator |