Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-mulc Structured version   Visualization version   Unicode version

Definition df-bj-mulc 33133
Description: Define the multiplication of extended complex numbers and of the complex projective line (Riemann sphere). In our convention, a product with 0 is 0, even when the other factor is infinite. An alternate convention leaves products of 0 with an infinite number undefined since the multiplication is not continuous at these points. Note that our convention entails  ( 0  /  0 )  =  0. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
df-bj-mulc  |- .cc  =  ( x  e.  ( (CCbar 
X. CCbar )  u.  (CChat  X. CChat
) )  |->  if ( ( ( 1st `  x
)  =  0  \/  ( 2nd `  x
)  =  0 ) ,  0 ,  if ( ( ( 1st `  x )  = infty  \/  ( 2nd `  x )  = infty ) , infty ,  if ( x  e.  ( CC  X.  CC ) ,  ( ( 1st `  x )  x.  ( 2nd `  x ) ) ,  (inftyexpi  `  (prcpal `  ( (Arg `  ( 1st `  x ) )  +  (Arg `  ( 2nd `  x ) ) ) ) ) ) ) ) )

Detailed syntax breakdown of Definition df-bj-mulc
StepHypRef Expression
1 cmulc 33132 . 2  class .cc
2 vx . . 3  setvar  x
3 cccbar 33102 . . . . 5  class CCbar
43, 3cxp 5112 . . . 4  class  (CCbar  X. CCbar )
5 ccchat 33119 . . . . 5  class CChat
65, 5cxp 5112 . . . 4  class  (CChat  X. CChat )
74, 6cun 3572 . . 3  class  ( (CCbar 
X. CCbar )  u.  (CChat  X. CChat
) )
82cv 1482 . . . . . . 7  class  x
9 c1st 7166 . . . . . . 7  class  1st
108, 9cfv 5888 . . . . . 6  class  ( 1st `  x )
11 cc0 9936 . . . . . 6  class  0
1210, 11wceq 1483 . . . . 5  wff  ( 1st `  x )  =  0
13 c2nd 7167 . . . . . . 7  class  2nd
148, 13cfv 5888 . . . . . 6  class  ( 2nd `  x )
1514, 11wceq 1483 . . . . 5  wff  ( 2nd `  x )  =  0
1612, 15wo 383 . . . 4  wff  ( ( 1st `  x )  =  0  \/  ( 2nd `  x )  =  0 )
17 cinfty 33117 . . . . . . 7  class infty
1810, 17wceq 1483 . . . . . 6  wff  ( 1st `  x )  = infty
1914, 17wceq 1483 . . . . . 6  wff  ( 2nd `  x )  = infty
2018, 19wo 383 . . . . 5  wff  ( ( 1st `  x )  = infty  \/  ( 2nd `  x )  = infty )
21 cc 9934 . . . . . . . 8  class  CC
2221, 21cxp 5112 . . . . . . 7  class  ( CC 
X.  CC )
238, 22wcel 1990 . . . . . 6  wff  x  e.  ( CC  X.  CC )
24 cmul 9941 . . . . . . 7  class  x.
2510, 14, 24co 6650 . . . . . 6  class  ( ( 1st `  x )  x.  ( 2nd `  x
) )
26 carg 33130 . . . . . . . . . 10  class Arg
2710, 26cfv 5888 . . . . . . . . 9  class  (Arg `  ( 1st `  x ) )
2814, 26cfv 5888 . . . . . . . . 9  class  (Arg `  ( 2nd `  x ) )
29 caddc 9939 . . . . . . . . 9  class  +
3027, 28, 29co 6650 . . . . . . . 8  class  ( (Arg
`  ( 1st `  x
) )  +  (Arg
`  ( 2nd `  x
) ) )
31 cprcpal 33128 . . . . . . . 8  class prcpal
3230, 31cfv 5888 . . . . . . 7  class  (prcpal `  ( (Arg `  ( 1st `  x ) )  +  (Arg `  ( 2nd `  x ) ) ) )
33 cinftyexpi 33093 . . . . . . 7  class inftyexpi
3432, 33cfv 5888 . . . . . 6  class  (inftyexpi  `  (prcpal `  ( (Arg `  ( 1st `  x ) )  +  (Arg `  ( 2nd `  x ) ) ) ) )
3523, 25, 34cif 4086 . . . . 5  class  if ( x  e.  ( CC 
X.  CC ) ,  ( ( 1st `  x
)  x.  ( 2nd `  x ) ) ,  (inftyexpi  `  (prcpal `  (
(Arg `  ( 1st `  x ) )  +  (Arg `  ( 2nd `  x ) ) ) ) ) )
3620, 17, 35cif 4086 . . . 4  class  if ( ( ( 1st `  x
)  = infty  \/  ( 2nd `  x )  = infty ) , infty ,  if ( x  e.  ( CC  X.  CC ) ,  ( ( 1st `  x
)  x.  ( 2nd `  x ) ) ,  (inftyexpi  `  (prcpal `  (
(Arg `  ( 1st `  x ) )  +  (Arg `  ( 2nd `  x ) ) ) ) ) ) )
3716, 11, 36cif 4086 . . 3  class  if ( ( ( 1st `  x
)  =  0  \/  ( 2nd `  x
)  =  0 ) ,  0 ,  if ( ( ( 1st `  x )  = infty  \/  ( 2nd `  x )  = infty ) , infty ,  if ( x  e.  ( CC  X.  CC ) ,  ( ( 1st `  x )  x.  ( 2nd `  x ) ) ,  (inftyexpi  `  (prcpal `  ( (Arg `  ( 1st `  x ) )  +  (Arg `  ( 2nd `  x ) ) ) ) ) ) ) )
382, 7, 37cmpt 4729 . 2  class  ( x  e.  ( (CCbar  X. CCbar )  u.  (CChat  X. CChat )
)  |->  if ( ( ( 1st `  x
)  =  0  \/  ( 2nd `  x
)  =  0 ) ,  0 ,  if ( ( ( 1st `  x )  = infty  \/  ( 2nd `  x )  = infty ) , infty ,  if ( x  e.  ( CC  X.  CC ) ,  ( ( 1st `  x )  x.  ( 2nd `  x ) ) ,  (inftyexpi  `  (prcpal `  ( (Arg `  ( 1st `  x ) )  +  (Arg `  ( 2nd `  x ) ) ) ) ) ) ) ) )
391, 38wceq 1483 1  wff .cc  =  ( x  e.  ( (CCbar 
X. CCbar )  u.  (CChat  X. CChat
) )  |->  if ( ( ( 1st `  x
)  =  0  \/  ( 2nd `  x
)  =  0 ) ,  0 ,  if ( ( ( 1st `  x )  = infty  \/  ( 2nd `  x )  = infty ) , infty ,  if ( x  e.  ( CC  X.  CC ) ,  ( ( 1st `  x )  x.  ( 2nd `  x ) ) ,  (inftyexpi  `  (prcpal `  ( (Arg `  ( 1st `  x ) )  +  (Arg `  ( 2nd `  x ) ) ) ) ) ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator