Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-blen Structured version   Visualization version   Unicode version

Definition df-blen 42364
Description: Define the binary length of an integer. Definition in section 1.3 of [AhoHopUll] p. 12. Although not restricted to integers, this definition is only meaningful for  n  e.  ZZ or even for  n  e.  CC. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
df-blen  |- #b  =  ( n  e.  _V  |->  if ( n  =  0 ,  1 ,  ( ( |_ `  (
2 logb  ( abs `  n
) ) )  +  1 ) ) )

Detailed syntax breakdown of Definition df-blen
StepHypRef Expression
1 cblen 42363 . 2  class #b
2 vn . . 3  setvar  n
3 cvv 3200 . . 3  class  _V
42cv 1482 . . . . 5  class  n
5 cc0 9936 . . . . 5  class  0
64, 5wceq 1483 . . . 4  wff  n  =  0
7 c1 9937 . . . 4  class  1
8 c2 11070 . . . . . . 7  class  2
9 cabs 13974 . . . . . . . 8  class  abs
104, 9cfv 5888 . . . . . . 7  class  ( abs `  n )
11 clogb 24502 . . . . . . 7  class logb
128, 10, 11co 6650 . . . . . 6  class  ( 2 logb  ( abs `  n ) )
13 cfl 12591 . . . . . 6  class  |_
1412, 13cfv 5888 . . . . 5  class  ( |_
`  ( 2 logb  ( abs `  n ) ) )
15 caddc 9939 . . . . 5  class  +
1614, 7, 15co 6650 . . . 4  class  ( ( |_ `  ( 2 logb  ( abs `  n ) ) )  +  1 )
176, 7, 16cif 4086 . . 3  class  if ( n  =  0 ,  1 ,  ( ( |_ `  ( 2 logb  ( abs `  n ) ) )  +  1 ) )
182, 3, 17cmpt 4729 . 2  class  ( n  e.  _V  |->  if ( n  =  0 ,  1 ,  ( ( |_ `  ( 2 logb  ( abs `  n ) ) )  +  1 ) ) )
191, 18wceq 1483 1  wff #b  =  ( n  e.  _V  |->  if ( n  =  0 ,  1 ,  ( ( |_ `  (
2 logb  ( abs `  n
) ) )  +  1 ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  blenval  42365
  Copyright terms: Public domain W3C validator