Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blenval Structured version   Visualization version   Unicode version

Theorem blenval 42365
Description: The binary length of an integer. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
blenval  |-  ( N  e.  V  ->  (#b `  N )  =  if ( N  =  0 ,  1 ,  ( ( |_ `  (
2 logb  ( abs `  N
) ) )  +  1 ) ) )

Proof of Theorem blenval
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 df-blen 42364 . . 3  |- #b  =  ( n  e.  _V  |->  if ( n  =  0 ,  1 ,  ( ( |_ `  (
2 logb  ( abs `  n
) ) )  +  1 ) ) )
21a1i 11 . 2  |-  ( N  e.  V  -> #b  =  ( n  e.  _V  |->  if ( n  =  0 ,  1 ,  ( ( |_ `  (
2 logb  ( abs `  n
) ) )  +  1 ) ) ) )
3 eqeq1 2626 . . . 4  |-  ( n  =  N  ->  (
n  =  0  <->  N  =  0 ) )
4 fveq2 6191 . . . . . . 7  |-  ( n  =  N  ->  ( abs `  n )  =  ( abs `  N
) )
54oveq2d 6666 . . . . . 6  |-  ( n  =  N  ->  (
2 logb  ( abs `  n
) )  =  ( 2 logb  ( abs `  N
) ) )
65fveq2d 6195 . . . . 5  |-  ( n  =  N  ->  ( |_ `  ( 2 logb  ( abs `  n ) ) )  =  ( |_ `  ( 2 logb  ( abs `  N
) ) ) )
76oveq1d 6665 . . . 4  |-  ( n  =  N  ->  (
( |_ `  (
2 logb  ( abs `  n
) ) )  +  1 )  =  ( ( |_ `  (
2 logb  ( abs `  N
) ) )  +  1 ) )
83, 7ifbieq2d 4111 . . 3  |-  ( n  =  N  ->  if ( n  =  0 ,  1 ,  ( ( |_ `  (
2 logb  ( abs `  n
) ) )  +  1 ) )  =  if ( N  =  0 ,  1 ,  ( ( |_ `  ( 2 logb  ( abs `  N
) ) )  +  1 ) ) )
98adantl 482 . 2  |-  ( ( N  e.  V  /\  n  =  N )  ->  if ( n  =  0 ,  1 ,  ( ( |_ `  ( 2 logb  ( abs `  n
) ) )  +  1 ) )  =  if ( N  =  0 ,  1 ,  ( ( |_ `  ( 2 logb  ( abs `  N
) ) )  +  1 ) ) )
10 elex 3212 . 2  |-  ( N  e.  V  ->  N  e.  _V )
11 1ex 10035 . . . 4  |-  1  e.  _V
12 ovex 6678 . . . 4  |-  ( ( |_ `  ( 2 logb  ( abs `  N ) ) )  +  1 )  e.  _V
1311, 12ifex 4156 . . 3  |-  if ( N  =  0 ,  1 ,  ( ( |_ `  ( 2 logb  ( abs `  N ) ) )  +  1 ) )  e.  _V
1413a1i 11 . 2  |-  ( N  e.  V  ->  if ( N  =  0 ,  1 ,  ( ( |_ `  (
2 logb  ( abs `  N
) ) )  +  1 ) )  e. 
_V )
152, 9, 10, 14fvmptd 6288 1  |-  ( N  e.  V  ->  (#b `  N )  =  if ( N  =  0 ,  1 ,  ( ( |_ `  (
2 logb  ( abs `  N
) ) )  +  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   |_cfl 12591   abscabs 13974   logb clogb 24502  #bcblen 42363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-blen 42364
This theorem is referenced by:  blen0  42366  blenn0  42367
  Copyright terms: Public domain W3C validator