| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-ch0 | Structured version Visualization version Unicode version | ||
| Description: Define the zero for closed subspaces of Hilbert space. See h0elch 28112 for closure law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-ch0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0h 27792 |
. 2
| |
| 2 | c0v 27781 |
. . 3
| |
| 3 | 2 | csn 4177 |
. 2
|
| 4 | 1, 3 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: elch0 28111 h0elch 28112 sh0le 28299 spansn0 28400 df0op2 28611 ho01i 28687 hh0oi 28762 nmop0h 28850 |
| Copyright terms: Public domain | W3C validator |