MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cht Structured version   Visualization version   Unicode version

Definition df-cht 24823
Description: Define the first Chebyshev function, which adds up the logarithms of all primes less than  x, see definition in [ApostolNT] p. 75. The symbol used to represent this function is sometimes the variant greek letter theta shown here and sometimes the greek letter psi, ψ; however, this notation can also refer to the second Chebyshev function, which adds up the logarithms of prime powers instead, see df-chp 24825. See https://en.wikipedia.org/wiki/Chebyshev_function for a discussion of the two functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
df-cht  |-  theta  =  ( x  e.  RR  |->  sum_
p  e.  ( ( 0 [,] x )  i^i  Prime ) ( log `  p ) )
Distinct variable group:    x, p

Detailed syntax breakdown of Definition df-cht
StepHypRef Expression
1 ccht 24817 . 2  class  theta
2 vx . . 3  setvar  x
3 cr 9935 . . 3  class  RR
4 cc0 9936 . . . . . 6  class  0
52cv 1482 . . . . . 6  class  x
6 cicc 12178 . . . . . 6  class  [,]
74, 5, 6co 6650 . . . . 5  class  ( 0 [,] x )
8 cprime 15385 . . . . 5  class  Prime
97, 8cin 3573 . . . 4  class  ( ( 0 [,] x )  i^i  Prime )
10 vp . . . . . 6  setvar  p
1110cv 1482 . . . . 5  class  p
12 clog 24301 . . . . 5  class  log
1311, 12cfv 5888 . . . 4  class  ( log `  p )
149, 13, 10csu 14416 . . 3  class  sum_ p  e.  ( ( 0 [,] x )  i^i  Prime ) ( log `  p
)
152, 3, 14cmpt 4729 . 2  class  ( x  e.  RR  |->  sum_ p  e.  ( ( 0 [,] x )  i^i  Prime ) ( log `  p
) )
161, 15wceq 1483 1  wff  theta  =  ( x  e.  RR  |->  sum_
p  e.  ( ( 0 [,] x )  i^i  Prime ) ( log `  p ) )
Colors of variables: wff setvar class
This definition is referenced by:  chtf  24834  chtval  24836
  Copyright terms: Public domain W3C validator