HomeHome Metamath Proof Explorer
Theorem List (p. 249 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 24801-24900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremftalem3 24801* Lemma for fta 24806. There exists a global minimum of the function  abs  o.  F. The proof uses a circle of radius  r where  r is the value coming from ftalem1 24799; since this is a compact set, the minimum on this disk is achieved, and this must then be the global minimum. (Contributed by Mario Carneiro, 14-Sep-2014.)
 |-  A  =  (coeff `  F )   &    |-  N  =  (deg `  F )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  D  =  { y  e.  CC  |  ( abs `  y
 )  <_  R }   &    |-  J  =  ( TopOpen ` fld )   &    |-  ( ph  ->  R  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  CC  ( R  <  ( abs `  x )  ->  ( abs `  ( F `  0 ) )  <  ( abs `  ( F `  x ) ) ) )   =>    |-  ( ph  ->  E. z  e.  CC  A. x  e. 
 CC  ( abs `  ( F `  z ) ) 
 <_  ( abs `  ( F `  x ) ) )
 
Theoremftalem4 24802* Lemma for fta 24806: Closure of the auxiliary variables for ftalem5 24803. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.)
 |-  A  =  (coeff `  F )   &    |-  N  =  (deg `  F )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  ( F `  0 )  =/=  0
 )   &    |-  K  = inf ( { n  e.  NN  |  ( A `  n )  =/=  0 } ,  RR ,  <  )   &    |-  T  =  ( -u ( ( F `
  0 )  /  ( A `  K ) )  ^c  ( 1  /  K ) )   &    |-  U  =  ( ( abs `  ( F `  0 ) ) 
 /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
 ( A `  k
 )  x.  ( T ^ k ) ) )  +  1 ) )   &    |-  X  =  if ( 1  <_  U ,  1 ,  U )   =>    |-  ( ph  ->  (
 ( K  e.  NN  /\  ( A `  K )  =/=  0 )  /\  ( T  e.  CC  /\  U  e.  RR+  /\  X  e.  RR+ ) ) )
 
Theoremftalem5 24803* Lemma for fta 24806: Main proof. We have already shifted the minimum found in ftalem3 24801 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let  K be the lowest term in the polynomial that is nonzero, and let  T be a  K-th root of  -u F ( 0 )  /  A
( K ). Then an evaluation of  F ( T X ) where  X is a sufficiently small positive number yields  F ( 0 ) for the first term and 
-u F ( 0 )  x.  X ^ K for the  K-th term, and all higher terms are bounded because  X is small. Thus,  abs ( F ( T X ) )  <_  abs ( F ( 0 ) ) ( 1  -  X ^ K )  <  abs ( F ( 0 ) ), in contradiction to our choice of  F ( 0 ) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014.) (Revised by AV, 28-Sep-2020.)
 |-  A  =  (coeff `  F )   &    |-  N  =  (deg `  F )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  ( F `  0 )  =/=  0
 )   &    |-  K  = inf ( { n  e.  NN  |  ( A `  n )  =/=  0 } ,  RR ,  <  )   &    |-  T  =  ( -u ( ( F `
  0 )  /  ( A `  K ) )  ^c  ( 1  /  K ) )   &    |-  U  =  ( ( abs `  ( F `  0 ) ) 
 /  ( sum_ k  e.  ( ( K  +  1 ) ... N ) ( abs `  (
 ( A `  k
 )  x.  ( T ^ k ) ) )  +  1 ) )   &    |-  X  =  if ( 1  <_  U ,  1 ,  U )   =>    |-  ( ph  ->  E. x  e.  CC  ( abs `  ( F `  x ) )  <  ( abs `  ( F `  0 ) ) )
 
Theoremftalem6 24804* Lemma for fta 24806: Discharge the auxiliary variables in ftalem5 24803. (Contributed by Mario Carneiro, 20-Sep-2014.) (Proof shortened by AV, 28-Sep-2020.)
 |-  A  =  (coeff `  F )   &    |-  N  =  (deg `  F )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  ( F `  0 )  =/=  0
 )   =>    |-  ( ph  ->  E. x  e.  CC  ( abs `  ( F `  x ) )  <  ( abs `  ( F `  0 ) ) )
 
Theoremftalem7 24805* Lemma for fta 24806. Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014.)
 |-  A  =  (coeff `  F )   &    |-  N  =  (deg `  F )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  X  e.  CC )   &    |-  ( ph  ->  ( F `  X )  =/=  0 )   =>    |-  ( ph  ->  -.  A. x  e.  CC  ( abs `  ( F `  X ) )  <_  ( abs `  ( F `  x ) ) )
 
Theoremfta 24806* The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( ( F  e.  (Poly `  S )  /\  (deg `  F )  e. 
 NN )  ->  E. z  e.  CC  ( F `  z )  =  0
 )
 
14.4.3  The Basel problem (ζ(2) = π2/6)
 
Theorembasellem1 24807 Lemma for basel 24816. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.) Replace OLD theorem. (Revised ba Wolf Lammen, 18-Sep-2020.)
 |-  N  =  ( ( 2  x.  M )  +  1 )   =>    |-  ( ( M  e.  NN  /\  K  e.  ( 1 ... M ) )  ->  ( ( K  x.  pi ) 
 /  N )  e.  ( 0 (,) ( pi  /  2 ) ) )
 
Theorembasellem2 24808* Lemma for basel 24816. Show that  P is a polynomial of degree  M, and compute its coefficient function. (Contributed by Mario Carneiro, 30-Jul-2014.)
 |-  N  =  ( ( 2  x.  M )  +  1 )   &    |-  P  =  ( t  e.  CC  |->  sum_
 j  e.  ( 0
 ... M ) ( ( ( N  _C  ( 2  x.  j
 ) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )   =>    |-  ( M  e.  NN  ->  ( P  e.  (Poly `  CC )  /\  (deg `  P )  =  M  /\  (coeff `  P )  =  ( n  e.  NN0  |->  ( ( N  _C  ( 2  x.  n ) )  x.  ( -u 1 ^ ( M  -  n ) ) ) ) ) )
 
Theorembasellem3 24809* Lemma for basel 24816. Using the binomial theorem and de Moivre's formula, we have the identity  _e ^ _i N x  /  ( sin x
) ^ n  =  sum_ m  e.  ( 0 ... N
) ( N  _C  m ) ( _i
^ m ) ( cot x ) ^
( N  -  m
), so taking imaginary parts yields  sin ( N x )  /  ( sin x
) ^ N  =  sum_ j  e.  ( 0 ... M
) ( N  _C  2 j ) (
-u 1 ) ^
( M  -  j
)  ( cot x
) ^ ( -u
2 j )  =  P ( ( cot x ) ^ 2 ), where  N  =  2 M  +  1. (Contributed by Mario Carneiro, 30-Jul-2014.)
 |-  N  =  ( ( 2  x.  M )  +  1 )   &    |-  P  =  ( t  e.  CC  |->  sum_
 j  e.  ( 0
 ... M ) ( ( ( N  _C  ( 2  x.  j
 ) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )   =>    |-  ( ( M  e.  NN  /\  A  e.  (
 0 (,) ( pi  / 
 2 ) ) ) 
 ->  ( P `  (
 ( tan `  A ) ^ -u 2 ) )  =  ( ( sin `  ( N  x.  A ) )  /  (
 ( sin `  A ) ^ N ) ) )
 
Theorembasellem4 24810* Lemma for basel 24816. By basellem3 24809, the expression  P ( ( cot x ) ^
2 )  =  sin ( N x )  / 
( sin x ) ^ N goes to zero whenever  x  =  n pi  /  N for some  n  e.  ( 1 ... M
), so this function enumerates  M distinct roots of a degree-  M polynomial, which must therefore be all the roots by fta1 24063. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  N  =  ( ( 2  x.  M )  +  1 )   &    |-  P  =  ( t  e.  CC  |->  sum_
 j  e.  ( 0
 ... M ) ( ( ( N  _C  ( 2  x.  j
 ) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )   &    |-  T  =  ( n  e.  ( 1
 ... M )  |->  ( ( tan `  (
 ( n  x.  pi )  /  N ) ) ^ -u 2 ) )   =>    |-  ( M  e.  NN  ->  T : ( 1
 ... M ) -1-1-onto-> ( `' P " { 0 } ) )
 
Theorembasellem5 24811* Lemma for basel 24816. Using vieta1 24067, we can calculate the sum of the roots of  P as the quotient of the top two coefficients, and since the function  T enumerates the roots, we are left with an equation that sums the  cot ^ 2 function at the  M different roots. (Contributed by Mario Carneiro, 29-Jul-2014.)
 |-  N  =  ( ( 2  x.  M )  +  1 )   &    |-  P  =  ( t  e.  CC  |->  sum_
 j  e.  ( 0
 ... M ) ( ( ( N  _C  ( 2  x.  j
 ) )  x.  ( -u 1 ^ ( M  -  j ) ) )  x.  ( t ^ j ) ) )   &    |-  T  =  ( n  e.  ( 1
 ... M )  |->  ( ( tan `  (
 ( n  x.  pi )  /  N ) ) ^ -u 2 ) )   =>    |-  ( M  e.  NN  -> 
 sum_ k  e.  (
 1 ... M ) ( ( tan `  (
 ( k  x.  pi )  /  N ) ) ^ -u 2 )  =  ( ( ( 2  x.  M )  x.  ( ( 2  x.  M )  -  1
 ) )  /  6
 ) )
 
Theorembasellem6 24812 Lemma for basel 24816. The function  G goes to zero because it is bounded by  1  /  n. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  G  =  ( n  e.  NN  |->  ( 1 
 /  ( ( 2  x.  n )  +  1 ) ) )   =>    |-  G 
 ~~>  0
 
Theorembasellem7 24813 Lemma for basel 24816. The function  1  +  A  x.  G for any fixed  A goes to  1. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  G  =  ( n  e.  NN  |->  ( 1 
 /  ( ( 2  x.  n )  +  1 ) ) )   &    |-  A  e.  CC   =>    |-  ( ( NN  X.  { 1 } )  oF  +  ( ( NN  X.  { A } )  oF  x.  G ) )  ~~>  1
 
Theorembasellem8 24814* Lemma for basel 24816. The function  F of partial sums of the inverse squares is bounded below by  J and above by  K, obtained by summing the inequality 
cot ^ 2 x  <_ 
1  /  x ^
2  <_  csc ^ 2 x  =  cot ^
2 x  +  1 over the  M roots of the polynomial  P, and applying the identity basellem5 24811. (Contributed by Mario Carneiro, 29-Jul-2014.)
 |-  G  =  ( n  e.  NN  |->  ( 1 
 /  ( ( 2  x.  n )  +  1 ) ) )   &    |-  F  =  seq 1
 (  +  ,  ( n  e.  NN  |->  ( n ^ -u 2 ) ) )   &    |-  H  =  ( ( NN  X.  {
 ( ( pi ^
 2 )  /  6
 ) } )  oF  x.  ( ( NN  X.  { 1 } )  oF  -  G ) )   &    |-  J  =  ( H  oF  x.  ( ( NN  X.  { 1 } )  oF  +  ( ( NN  X.  { -u 2 } )  oF  x.  G ) ) )   &    |-  K  =  ( H  oF  x.  (
 ( NN  X.  {
 1 } )  oF  +  G ) )   &    |-  N  =  ( ( 2  x.  M )  +  1 )   =>    |-  ( M  e.  NN  ->  ( ( J `  M )  <_  ( F `  M )  /\  ( F `
  M )  <_  ( K `  M ) ) )
 
Theorembasellem9 24815* Lemma for basel 24816. Since by basellem8 24814 
F is bounded by two expressions that tend to  pi ^ 2  / 
6,  F must also go to  pi ^ 2  /  6 by the squeeze theorem climsqz 14371. But the series  F is exactly the partial sums of 
k ^ -u 2, so it follows that this is also the value of the infinite sum  sum_ k  e.  NN ( k ^ -u 2
). (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  G  =  ( n  e.  NN  |->  ( 1 
 /  ( ( 2  x.  n )  +  1 ) ) )   &    |-  F  =  seq 1
 (  +  ,  ( n  e.  NN  |->  ( n ^ -u 2 ) ) )   &    |-  H  =  ( ( NN  X.  {
 ( ( pi ^
 2 )  /  6
 ) } )  oF  x.  ( ( NN  X.  { 1 } )  oF  -  G ) )   &    |-  J  =  ( H  oF  x.  ( ( NN  X.  { 1 } )  oF  +  ( ( NN  X.  { -u 2 } )  oF  x.  G ) ) )   &    |-  K  =  ( H  oF  x.  (
 ( NN  X.  {
 1 } )  oF  +  G ) )   =>    |- 
 sum_ k  e.  NN  ( k ^ -u 2
 )  =  ( ( pi ^ 2 ) 
 /  6 )
 
Theorembasel 24816 The sum of the inverse squares is 
pi ^ 2  / 
6. This is commonly known as the Basel problem, with the first known proof attributed to Euler. See http://en.wikipedia.org/wiki/Basel_problem. This particular proof approach is due to Cauchy (1821). This is Metamath 100 proof #14. (Contributed by Mario Carneiro, 30-Jul-2014.)
 |- 
 sum_ k  e.  NN  ( k ^ -u 2
 )  =  ( ( pi ^ 2 ) 
 /  6 )
 
14.4.4  Number-theoretical functions
 
Syntaxccht 24817 Extend class notation with the first Chebyshev function.
 class  theta
 
Syntaxcvma 24818 Extend class notation with the von Mangoldt function.
 class Λ
 
Syntaxcchp 24819 Extend class notation with the second Chebyshev function.
 class ψ
 
Syntaxcppi 24820 Extend class notation with the prime-counting function pi.
 class π
 
Syntaxcmu 24821 Extend class notation with the Möbius function.
 class  mmu
 
Syntaxcsgm 24822 Extend class notation with the divisor function.
 class  sigma
 
Definitiondf-cht 24823* Define the first Chebyshev function, which adds up the logarithms of all primes less than  x, see definition in [ApostolNT] p. 75. The symbol used to represent this function is sometimes the variant greek letter theta shown here and sometimes the greek letter psi, ψ; however, this notation can also refer to the second Chebyshev function, which adds up the logarithms of prime powers instead, see df-chp 24825. See https://en.wikipedia.org/wiki/Chebyshev_function for a discussion of the two functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |- 
 theta  =  ( x  e.  RR  |->  sum_ p  e.  (
 ( 0 [,] x )  i^i  Prime ) ( log `  p ) )
 
Definitiondf-vma 24824* Define the von Mangoldt function, which gives the logarithm of the prime at a prime power, and is zero elsewhere, see definition in [ApostolNT] p. 32. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |- Λ  =  ( x  e.  NN  |->  [_
 { p  e.  Prime  |  p  ||  x }  /  s ]_ if (
 ( # `  s )  =  1 ,  ( log `  U. s ) ,  0 ) )
 
Definitiondf-chp 24825* Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than  x, see definition in [ApostolNT] p. 75. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |- ψ  =  ( x  e.  RR  |->  sum_
 n  e.  ( 1
 ... ( |_ `  x ) ) (Λ `  n ) )
 
Definitiondf-ppi 24826 Define the prime π function, which counts the number of primes less than or equal to  x, see definition in [ApostolNT] p. 8. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |- π  =  ( x  e.  RR  |->  ( # `  ( ( 0 [,] x )  i^i  Prime ) ) )
 
Definitiondf-mu 24827* Define the Möbius function, which is zero for non-squarefree numbers and is  -u 1 or  1 for squarefree numbers according as to the number of prime divisors of the number is even or odd, see definition in [ApostolNT] p. 24. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |- 
 mmu  =  ( x  e.  NN  |->  if ( E. p  e.  Prime  ( p ^
 2 )  ||  x ,  0 ,  ( -u 1 ^ ( # ` 
 { p  e.  Prime  |  p  ||  x }
 ) ) ) )
 
Definitiondf-sgm 24828* Define the sum of positive divisors function  ( x  sigma  n ), which is the sum of the xth powers of the positive integer divisors of n, see definition in [ApostolNT] p. 38. For  x  = 
0,  ( x  sigma  n ) counts the number of divisors of  n, i.e.  ( 0  sigma  n ) is the divisor function, see remark in [ApostolNT] p. 38. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |- 
 sigma  =  ( x  e.  CC ,  n  e. 
 NN  |->  sum_ k  e.  { p  e.  NN  |  p  ||  n }  ( k 
 ^c  x ) )
 
Theoremefnnfsumcl 24829* Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  ( exp `  B )  e. 
 NN )   =>    |-  ( ph  ->  ( exp `  sum_ k  e.  A  B )  e.  NN )
 
Theoremppisval 24830 The set of primes less than  A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( A  e.  RR  ->  ( ( 0 [,]
 A )  i^i  Prime )  =  ( ( 2
 ... ( |_ `  A ) )  i^i  Prime )
 )
 
Theoremppisval2 24831 The set of primes less than  A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( ( A  e.  RR  /\  2  e.  ( ZZ>=
 `  M ) ) 
 ->  ( ( 0 [,]
 A )  i^i  Prime )  =  ( ( M
 ... ( |_ `  A ) )  i^i  Prime )
 )
 
Theoremppifi 24832 The set of primes less than  A is a finite set. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  RR  ->  ( ( 0 [,]
 A )  i^i  Prime )  e.  Fin )
 
Theoremprmdvdsfi 24833* The set of prime divisors of a number is a finite set. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  NN  ->  { p  e.  Prime  |  p  ||  A }  e.  Fin )
 
Theoremchtf 24834 Domain and range of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |- 
 theta : RR --> RR
 
Theoremchtcl 24835 Real closure of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  RR  ->  ( theta `  A )  e.  RR )
 
Theoremchtval 24836* Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  RR  ->  ( theta `  A )  =  sum_ p  e.  (
 ( 0 [,] A )  i^i  Prime ) ( log `  p ) )
 
Theoremefchtcl 24837 The Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  RR  ->  ( exp `  ( theta `  A ) )  e.  NN )
 
Theoremchtge0 24838 The Chebyshev function is always positive. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  RR  ->  0  <_  ( theta `  A ) )
 
Theoremvmaval 24839* Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  S  =  { p  e.  Prime  |  p  ||  A }   =>    |-  ( A  e.  NN  ->  (Λ `  A )  =  if ( ( # `  S )  =  1 ,  ( log `  U. S ) ,  0 )
 )
 
Theoremisppw 24840* Two ways to say that  A is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  NN  ->  ( (Λ `  A )  =/=  0  <->  E! p  e.  Prime  p 
 ||  A ) )
 
Theoremisppw2 24841* Two ways to say that  A is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  NN  ->  ( (Λ `  A )  =/=  0  <->  E. p  e.  Prime  E. k  e.  NN  A  =  ( p ^ k
 ) ) )
 
Theoremvmappw 24842 Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (Λ `  ( P ^ K ) )  =  ( log `  P ) )
 
Theoremvmaprm 24843 Value of the von Mangoldt function at a prime. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( P  e.  Prime  ->  (Λ `  P )  =  ( log `  P ) )
 
Theoremvmacl 24844 Closure for the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  NN  ->  (Λ `  A )  e.  RR )
 
Theoremvmaf 24845 Functionality of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |- Λ : NN --> RR
 
Theoremefvmacl 24846 The von Mangoldt is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  NN  ->  ( exp `  (Λ `  A ) )  e. 
 NN )
 
Theoremvmage0 24847 The von Mangoldt function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  NN  ->  0  <_  (Λ `  A ) )
 
Theoremchpval 24848* Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ n  e.  (
 1 ... ( |_ `  A ) ) (Λ `  n ) )
 
Theoremchpf 24849 Functionality of the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |- ψ : RR --> RR
 
Theoremchpcl 24850 Closure for the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  RR  ->  (ψ `  A )  e.  RR )
 
Theoremefchpcl 24851 The second Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  RR  ->  ( exp `  (ψ `  A ) )  e. 
 NN )
 
Theoremchpge0 24852 The second Chebyshev function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016.)
 |-  ( A  e.  RR  ->  0  <_  (ψ `  A ) )
 
Theoremppival 24853 Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  RR  ->  (π `  A )  =  ( # `  (
 ( 0 [,] A )  i^i  Prime ) ) )
 
Theoremppival2 24854 Value of the prime-counting function pi. (Contributed by Mario Carneiro, 18-Sep-2014.)
 |-  ( A  e.  ZZ  ->  (π `  A )  =  ( # `  (
 ( 2 ... A )  i^i  Prime ) ) )
 
Theoremppival2g 24855 Value of the prime-counting function pi. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( ( A  e.  ZZ  /\  2  e.  ( ZZ>=
 `  M ) ) 
 ->  (π `  A )  =  ( # `  (
 ( M ... A )  i^i  Prime ) ) )
 
Theoremppif 24856 Domain and range of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |- π : RR --> NN0
 
Theoremppicl 24857 Real closure of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  RR  ->  (π `  A )  e. 
 NN0 )
 
Theoremmuval 24858* The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( A  e.  NN  ->  ( mmu `  A )  =  if ( E. p  e.  Prime  ( p ^ 2 ) 
 ||  A ,  0 ,  ( -u 1 ^ ( # `  { p  e.  Prime  |  p  ||  A } ) ) ) )
 
Theoremmuval1 24859 The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  ( ( A  e.  NN  /\  P  e.  ( ZZ>=
 `  2 )  /\  ( P ^ 2 ) 
 ||  A )  ->  ( mmu `  A )  =  0 )
 
Theoremmuval2 24860* The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( A  e.  NN  /\  ( mmu `  A )  =/=  0
 )  ->  ( mmu `  A )  =  (
 -u 1 ^ ( # `
  { p  e. 
 Prime  |  p  ||  A } ) ) )
 
Theoremisnsqf 24861* Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( A  e.  NN  ->  ( ( mmu `  A )  =  0  <->  E. p  e.  Prime  ( p ^ 2 )  ||  A ) )
 
Theoremissqf 24862* Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( A  e.  NN  ->  ( ( mmu `  A )  =/=  0  <->  A. p  e.  Prime  ( p  pCnt  A )  <_ 
 1 ) )
 
Theoremsqfpc 24863 The prime count of a squarefree number is at most 1. (Contributed by Mario Carneiro, 1-Jul-2015.)
 |-  ( ( A  e.  NN  /\  ( mmu `  A )  =/=  0  /\  P  e.  Prime )  ->  ( P  pCnt  A ) 
 <_  1 )
 
Theoremdvdssqf 24864 A divisor of a squarefree number is squarefree. (Contributed by Mario Carneiro, 1-Jul-2015.)
 |-  ( ( A  e.  NN  /\  B  e.  NN  /\  B  ||  A )  ->  ( ( mmu `  A )  =/=  0  ->  ( mmu `  B )  =/=  0 ) )
 
Theoremsqf11 24865* A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015.)
 |-  ( ( ( A  e.  NN  /\  ( mmu `  A )  =/=  0 )  /\  ( B  e.  NN  /\  ( mmu `  B )  =/=  0 ) )  ->  ( A  =  B  <->  A. p  e.  Prime  ( p  ||  A  <->  p  ||  B ) ) )
 
Theoremmuf 24866 The Möbius function is a function into the integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |- 
 mmu : NN --> ZZ
 
Theoremmucl 24867 Closure of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( A  e.  NN  ->  ( mmu `  A )  e.  ZZ )
 
Theoremsgmval 24868* The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  NN )  ->  ( A  sigma  B )  =  sum_ k  e.  { p  e.  NN  |  p  ||  B }  ( k  ^c  A ) )
 
Theoremsgmval2 24869* The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  sigma  B )  =  sum_ k  e.  { p  e.  NN  |  p  ||  B }  ( k ^ A ) )
 
Theorem0sgm 24870* The value of the sum-of-divisors function, usually denoted σ<SUB>0</SUB>(<i>n</i>). (Contributed by Mario Carneiro, 21-Jun-2015.)
 |-  ( A  e.  NN  ->  ( 0  sigma  A )  =  ( # `  { p  e.  NN  |  p  ||  A } ) )
 
Theoremsgmf 24871 The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.)
 |- 
 sigma  : ( CC  X.  NN ) --> CC
 
Theoremsgmcl 24872 Closure of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  NN )  ->  ( A  sigma  B )  e.  CC )
 
Theoremsgmnncl 24873 Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  sigma  B )  e.  NN )
 
Theoremmule1 24874 The Möbius function takes on values in magnitude at most  1. (Together with mucl 24867, this implies that it takes a value in  { -u 1 ,  0 ,  1 } for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( A  e.  NN  ->  ( abs `  ( mmu `  A ) ) 
 <_  1 )
 
Theoremchtfl 24875 The Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( A  e.  RR  ->  ( theta `  ( |_ `  A ) )  =  ( theta `  A )
 )
 
Theoremchpfl 24876 The second Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 9-Apr-2016.)
 |-  ( A  e.  RR  ->  (ψ `  ( |_ `  A ) )  =  (ψ `  A )
 )
 
Theoremppiprm 24877 The prime-counting function π at a prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
 |-  ( ( A  e.  ZZ  /\  ( A  +  1 )  e.  Prime ) 
 ->  (π `  ( A  +  1 ) )  =  ( (π `  A )  +  1 ) )
 
Theoremppinprm 24878 The prime-counting function π at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
 |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e. 
 Prime )  ->  (π `  ( A  +  1 )
 )  =  (π `  A ) )
 
Theoremchtprm 24879 The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( ( A  e.  ZZ  /\  ( A  +  1 )  e.  Prime ) 
 ->  ( theta `  ( A  +  1 ) )  =  ( ( theta `  A )  +  ( log `  ( A  +  1 ) ) ) )
 
Theoremchtnprm 24880 The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014.)
 |-  ( ( A  e.  ZZ  /\  -.  ( A  +  1 )  e. 
 Prime )  ->  ( theta `  ( A  +  1 ) )  =  (
 theta `  A ) )
 
Theoremchpp1 24881 The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016.)
 |-  ( A  e.  NN0  ->  (ψ `  ( A  +  1 ) )  =  ( (ψ `  A )  +  (Λ `  ( A  +  1 )
 ) ) )
 
Theoremchtwordi 24882 The Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( theta `  A )  <_  ( theta `  B )
 )
 
Theoremchpwordi 24883 The second Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 9-Apr-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (ψ `  A )  <_  (ψ `  B )
 )
 
Theoremchtdif 24884* The difference of the Chebyshev function at two points sums the logarithms of the primes in an interval. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( ( theta `  N )  -  ( theta `  M ) )  =  sum_ p  e.  ( ( ( M  +  1 )
 ... N )  i^i 
 Prime ) ( log `  p ) )
 
Theoremefchtdvds 24885 The exponentiated Chebyshev function forms a divisibility chain between any two points. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( exp `  ( theta `  A ) ) 
 ||  ( exp `  ( theta `  B ) ) )
 
Theoremppifl 24886 The prime-counting function π does not change off the integers. (Contributed by Mario Carneiro, 18-Sep-2014.)
 |-  ( A  e.  RR  ->  (π `  ( |_ `  A ) )  =  (π `  A ) )
 
Theoremppip1le 24887 The prime-counting function π cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  ( A  e.  RR  ->  (π `  ( A  +  1 ) )  <_  ( (π `  A )  +  1 ) )
 
Theoremppiwordi 24888 The prime-counting function π is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  (π `  A )  <_  (π
 `  B ) )
 
Theoremppidif 24889 The difference of the prime-counting function π at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  ( (π `  N )  -  (π
 `  M ) )  =  ( # `  (
 ( ( M  +  1 ) ... N )  i^i  Prime ) ) )
 
Theoremppi1 24890 The prime-counting function π at  1. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  (π `  1 )  =  0
 
Theoremcht1 24891 The Chebyshev function at  1. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( theta `  1 )  =  0
 
Theoremvma1 24892 The von Mangoldt function at  1. (Contributed by Mario Carneiro, 9-Apr-2016.)
 |-  (Λ `  1 )  =  0
 
Theoremchp1 24893 The second Chebyshev function at  1. (Contributed by Mario Carneiro, 9-Apr-2016.)
 |-  (ψ `  1 )  =  0
 
Theoremppi1i 24894 Inference form of ppiprm 24877. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  M  e.  NN0   &    |-  N  =  ( M  +  1 )   &    |-  (π `  M )  =  K   &    |-  N  e.  Prime   =>    |-  (π `  N )  =  ( K  +  1 )
 
Theoremppi2i 24895 Inference form of ppinprm 24878. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  M  e.  NN0   &    |-  N  =  ( M  +  1 )   &    |-  (π `  M )  =  K   &    |-  -.  N  e.  Prime   =>    |-  (π `  N )  =  K
 
Theoremppi2 24896 The prime-counting function π at  2. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  (π `  2 )  =  1
 
Theoremppi3 24897 The prime-counting function π at  3. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  (π `  3 )  =  2
 
Theoremcht2 24898 The Chebyshev function at  2. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( theta `  2 )  =  ( log `  2
 )
 
Theoremcht3 24899 The Chebyshev function at  3. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( theta `  3 )  =  ( log `  6
 )
 
Theoremppinncl 24900 Closure of the prime-counting function π in the positive integers. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  ( ( A  e.  RR  /\  2  <_  A )  ->  (π `  A )  e. 
 NN )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >