![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-cph | Structured version Visualization version Unicode version |
Description: Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a quadratically closed subfield of ℂfld, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015.) |
Ref | Expression |
---|---|
df-cph |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccph 22966 |
. 2
![]() ![]() | |
2 | vf |
. . . . . . . 8
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . . . 7
![]() ![]() |
4 | ccnfld 19746 |
. . . . . . . 8
![]() | |
5 | vk |
. . . . . . . . 9
![]() ![]() | |
6 | 5 | cv 1482 |
. . . . . . . 8
![]() ![]() |
7 | cress 15858 |
. . . . . . . 8
![]() | |
8 | 4, 6, 7 | co 6650 |
. . . . . . 7
![]() ![]() ![]() ![]() |
9 | 3, 8 | wceq 1483 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
10 | csqrt 13973 |
. . . . . . . 8
![]() ![]() | |
11 | cc0 9936 |
. . . . . . . . . 10
![]() ![]() | |
12 | cpnf 10071 |
. . . . . . . . . 10
![]() ![]() | |
13 | cico 12177 |
. . . . . . . . . 10
![]() ![]() | |
14 | 11, 12, 13 | co 6650 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
15 | 6, 14 | cin 3573 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 10, 15 | cima 5117 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16, 6 | wss 3574 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | vw |
. . . . . . . . 9
![]() ![]() | |
19 | 18 | cv 1482 |
. . . . . . . 8
![]() ![]() |
20 | cnm 22381 |
. . . . . . . 8
![]() ![]() | |
21 | 19, 20 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
22 | vx |
. . . . . . . 8
![]() ![]() | |
23 | cbs 15857 |
. . . . . . . . 9
![]() ![]() | |
24 | 19, 23 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() |
25 | 22 | cv 1482 |
. . . . . . . . . 10
![]() ![]() |
26 | cip 15946 |
. . . . . . . . . . 11
![]() ![]() | |
27 | 19, 26 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
28 | 25, 25, 27 | co 6650 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 28, 10 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 22, 24, 29 | cmpt 4729 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 21, 30 | wceq 1483 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 9, 17, 31 | w3a 1037 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 3, 23 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
34 | 32, 5, 33 | wsbc 3435 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | csca 15944 |
. . . . 5
![]() | |
36 | 19, 35 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
37 | 34, 2, 36 | wsbc 3435 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | cphl 19969 |
. . . 4
![]() ![]() | |
39 | cnlm 22385 |
. . . 4
![]() | |
40 | 38, 39 | cin 3573 |
. . 3
![]() ![]() ![]() ![]() ![]() |
41 | 37, 18, 40 | crab 2916 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
42 | 1, 41 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: iscph 22970 |
Copyright terms: Public domain | W3C validator |