MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscph Structured version   Visualization version   Unicode version

Theorem iscph 22970
Description: A subcomplex pre-Hilbert space is a pre-Hilbert space over a quadratically closed subfield of the field of complex numbers, with a norm defined. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
iscph.v  |-  V  =  ( Base `  W
)
iscph.h  |-  .,  =  ( .i `  W )
iscph.n  |-  N  =  ( norm `  W
)
iscph.f  |-  F  =  (Scalar `  W )
iscph.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
iscph  |-  ( W  e.  CPreHil 
<->  ( ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) )
Distinct variable group:    x, W
Allowed substitution hints:    F( x)    ., ( x)    K( x)    N( x)    V( x)

Proof of Theorem iscph
Dummy variables  f 
k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . . . 5  |-  ( W  e.  ( PreHil  i^i NrmMod )  <->  ( W  e.  PreHil  /\  W  e. NrmMod ) )
21anbi1i 731 . . . 4  |-  ( ( W  e.  ( PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  <->  ( ( W  e.  PreHil  /\  W  e. NrmMod )  /\  F  =  (flds  K ) ) )
3 df-3an 1039 . . . 4  |-  ( ( W  e.  PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  <->  ( ( W  e.  PreHil  /\  W  e. NrmMod )  /\  F  =  (flds  K ) ) )
42, 3bitr4i 267 . . 3  |-  ( ( W  e.  ( PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  <->  ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) ) )
54anbi1i 731 . 2  |-  ( ( ( W  e.  (
PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) )  <->  ( ( W  e.  PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) )
6 fvexd 6203 . . . . 5  |-  ( w  =  W  ->  (Scalar `  w )  e.  _V )
7 fvexd 6203 . . . . . 6  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  ( Base `  f )  e. 
_V )
8 simplr 792 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
f  =  (Scalar `  w ) )
9 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  ->  w  =  W )
109fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
(Scalar `  w )  =  (Scalar `  W )
)
11 iscph.f . . . . . . . . . . 11  |-  F  =  (Scalar `  W )
1210, 11syl6eqr 2674 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
(Scalar `  w )  =  F )
138, 12eqtrd 2656 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
f  =  F )
14 simpr 477 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
k  =  ( Base `  f ) )
1513fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  f )  =  ( Base `  F
) )
16 iscph.k . . . . . . . . . . . 12  |-  K  =  ( Base `  F
)
1715, 16syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  f )  =  K )
1814, 17eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
k  =  K )
1918oveq2d 6666 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
(flds  k
)  =  (flds  K ) )
2013, 19eqeq12d 2637 . . . . . . . 8  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( f  =  (flds  k )  <-> 
F  =  (flds  K ) ) )
2118ineq1d 3813 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( k  i^i  (
0 [,) +oo )
)  =  ( K  i^i  ( 0 [,) +oo ) ) )
2221imaeq2d 5466 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( sqr " (
k  i^i  ( 0 [,) +oo ) ) )  =  ( sqr " ( K  i^i  ( 0 [,) +oo ) ) ) )
2322, 18sseq12d 3634 . . . . . . . 8  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( sqr " (
k  i^i  ( 0 [,) +oo ) ) )  C_  k  <->  ( sqr " ( K  i^i  (
0 [,) +oo )
) )  C_  K
) )
249fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( norm `  w )  =  ( norm `  W
) )
25 iscph.n . . . . . . . . . 10  |-  N  =  ( norm `  W
)
2624, 25syl6eqr 2674 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( norm `  w )  =  N )
279fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  w )  =  ( Base `  W
) )
28 iscph.v . . . . . . . . . . 11  |-  V  =  ( Base `  W
)
2927, 28syl6eqr 2674 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  w )  =  V )
309fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( .i `  w
)  =  ( .i
`  W ) )
31 iscph.h . . . . . . . . . . . . 13  |-  .,  =  ( .i `  W )
3230, 31syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( .i `  w
)  =  .,  )
3332oveqd 6667 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( x ( .i
`  w ) x )  =  ( x 
.,  x ) )
3433fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( sqr `  (
x ( .i `  w ) x ) )  =  ( sqr `  ( x  .,  x
) ) )
3529, 34mpteq12dv 4733 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( x  e.  (
Base `  w )  |->  ( sqr `  (
x ( .i `  w ) x ) ) )  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )
3626, 35eqeq12d 2637 . . . . . . . 8  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) )  <->  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )
3720, 23, 363anbi123d 1399 . . . . . . 7  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( f  =  (flds  k )  /\  ( sqr " ( k  i^i  ( 0 [,) +oo ) ) )  C_  k  /\  ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) )
38 3anass 1042 . . . . . . 7  |-  ( ( F  =  (flds  K )  /\  ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) )
3937, 38syl6bb 276 . . . . . 6  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( f  =  (flds  k )  /\  ( sqr " ( k  i^i  ( 0 [,) +oo ) ) )  C_  k  /\  ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) ) )
407, 39sbcied 3472 . . . . 5  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  ( [. ( Base `  f
)  /  k ]. ( f  =  (flds  k )  /\  ( sqr " (
k  i^i  ( 0 [,) +oo ) ) )  C_  k  /\  ( norm `  w )  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) ) )
416, 40sbcied 3472 . . . 4  |-  ( w  =  W  ->  ( [. (Scalar `  w )  /  f ]. [. ( Base `  f )  / 
k ]. ( f  =  (flds  k )  /\  ( sqr " ( k  i^i  ( 0 [,) +oo ) ) )  C_  k  /\  ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) ) )
42 df-cph 22968 . . . 4  |-  CPreHil  =  {
w  e.  ( PreHil  i^i NrmMod )  |  [. (Scalar `  w )  /  f ]. [. ( Base `  f
)  /  k ]. ( f  =  (flds  k )  /\  ( sqr " (
k  i^i  ( 0 [,) +oo ) ) )  C_  k  /\  ( norm `  w )  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) ) }
4341, 42elrab2 3366 . . 3  |-  ( W  e.  CPreHil 
<->  ( W  e.  (
PreHil  i^i NrmMod )  /\  ( F  =  (flds  K )  /\  (
( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) ) )
44 anass 681 . . 3  |-  ( ( ( W  e.  (
PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) )  <->  ( W  e.  ( PreHil  i^i NrmMod )  /\  ( F  =  (flds  K )  /\  (
( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) ) )
4543, 44bitr4i 267 . 2  |-  ( W  e.  CPreHil 
<->  ( ( W  e.  ( PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) )
46 3anass 1042 . 2  |-  ( ( ( W  e.  PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )  <->  ( ( W  e.  PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) )
475, 45, 463bitr4i 292 1  |-  ( W  e.  CPreHil 
<->  ( ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( sqr " ( K  i^i  ( 0 [,) +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435    i^i cin 3573    C_ wss 3574    |-> cmpt 4729   "cima 5117   ` cfv 5888  (class class class)co 6650   0cc0 9936   +oocpnf 10071   [,)cico 12177   sqrcsqrt 13973   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944   .icip 15946  ℂfldccnfld 19746   PreHilcphl 19969   normcnm 22381  NrmModcnlm 22385   CPreHilccph 22966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ov 6653  df-cph 22968
This theorem is referenced by:  cphphl  22971  cphnlm  22972  cphsca  22979  cphsqrtcl  22984  cphnmfval  22992  tchcph  23036
  Copyright terms: Public domain W3C validator