MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-crcts Structured version   Visualization version   Unicode version

Definition df-crcts 26681
Description: Define the set of all circuits (in an undirected graph).

According to Wikipedia ("Cycle (graph theory)", https://en.wikipedia.org/wiki/Cycle_(graph_theory), 3-Oct-2017): "A circuit can be a closed walk allowing repetitions of vertices but not edges;"; according to Wikipedia ("Glossary of graph theory terms", https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms, 3-Oct-2017): "A circuit may refer to ... a trail (a closed tour without repeated edges), ...".

Following Bollobas ("A trail whose endvertices coincide (a closed trail) is called a circuit.", see Definition of [Bollobas] p. 5.), a circuit is a closed trail without repeated edges. So the circuit is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0). (Contributed by Alexander van der Vekens, 3-Oct-2017.) (Revised by AV, 31-Jan-2021.)

Assertion
Ref Expression
df-crcts  |- Circuits  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f (Trails `  g ) p  /\  ( p `  0
)  =  ( p `
 ( # `  f
) ) ) } )
Distinct variable group:    f, g, p

Detailed syntax breakdown of Definition df-crcts
StepHypRef Expression
1 ccrcts 26679 . 2  class Circuits
2 vg . . 3  setvar  g
3 cvv 3200 . . 3  class  _V
4 vf . . . . . . 7  setvar  f
54cv 1482 . . . . . 6  class  f
6 vp . . . . . . 7  setvar  p
76cv 1482 . . . . . 6  class  p
82cv 1482 . . . . . . 7  class  g
9 ctrls 26587 . . . . . . 7  class Trails
108, 9cfv 5888 . . . . . 6  class  (Trails `  g )
115, 7, 10wbr 4653 . . . . 5  wff  f (Trails `  g ) p
12 cc0 9936 . . . . . . 7  class  0
1312, 7cfv 5888 . . . . . 6  class  ( p `
 0 )
14 chash 13117 . . . . . . . 8  class  #
155, 14cfv 5888 . . . . . . 7  class  ( # `  f )
1615, 7cfv 5888 . . . . . 6  class  ( p `
 ( # `  f
) )
1713, 16wceq 1483 . . . . 5  wff  ( p `
 0 )  =  ( p `  ( # `
 f ) )
1811, 17wa 384 . . . 4  wff  ( f (Trails `  g )
p  /\  ( p `  0 )  =  ( p `  ( # `
 f ) ) )
1918, 4, 6copab 4712 . . 3  class  { <. f ,  p >.  |  ( f (Trails `  g
) p  /\  (
p `  0 )  =  ( p `  ( # `  f ) ) ) }
202, 3, 19cmpt 4729 . 2  class  ( g  e.  _V  |->  { <. f ,  p >.  |  ( f (Trails `  g
) p  /\  (
p `  0 )  =  ( p `  ( # `  f ) ) ) } )
211, 20wceq 1483 1  wff Circuits  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f (Trails `  g ) p  /\  ( p `  0
)  =  ( p `
 ( # `  f
) ) ) } )
Colors of variables: wff setvar class
This definition is referenced by:  crcts  26683
  Copyright terms: Public domain W3C validator