![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-cycls | Structured version Visualization version Unicode version |
Description: Define the set of all
(simple) cycles (in an undirected graph).
According to Wikipedia ("Cycle (graph theory)", https://en.wikipedia.org/wiki/Cycle_(graph_theory), 3-Oct-2017): "A simple cycle may be defined either as a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex," According to Bollobas: "If a walk W = x0 x1 ... x(l) is such that l >= 3, x0=x(l), and the vertices x(i), 0 < i < l, are distinct from each other and x0, then W is said to be a cycle.", see Definition of [Bollobas] p. 5. However, since a walk consisting of distinct vertices (except the first and the last vertex) is a path, a cycle can be defined as path whose first and last vertices coincide. So a cycle is represented by the following sequence: p(0) e(f(1)) p(1) ... p(n-1) e(f(n)) p(n)=p(0). (Contributed by Alexander van der Vekens, 3-Oct-2017.) (Revised by AV, 31-Jan-2021.) |
Ref | Expression |
---|---|
df-cycls |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccycls 26680 |
. 2
![]() | |
2 | vg |
. . 3
![]() ![]() | |
3 | cvv 3200 |
. . 3
![]() ![]() | |
4 | vf |
. . . . . . 7
![]() ![]() | |
5 | 4 | cv 1482 |
. . . . . 6
![]() ![]() |
6 | vp |
. . . . . . 7
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . 6
![]() ![]() |
8 | 2 | cv 1482 |
. . . . . . 7
![]() ![]() |
9 | cpths 26608 |
. . . . . . 7
![]() | |
10 | 8, 9 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
11 | 5, 7, 10 | wbr 4653 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | cc0 9936 |
. . . . . . 7
![]() ![]() | |
13 | 12, 7 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
14 | chash 13117 |
. . . . . . . 8
![]() ![]() | |
15 | 5, 14 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
16 | 15, 7 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 13, 16 | wceq 1483 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 11, 17 | wa 384 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18, 4, 6 | copab 4712 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 2, 3, 19 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 1, 20 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: cycls 26684 |
Copyright terms: Public domain | W3C validator |