![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dgraa | Structured version Visualization version Unicode version |
Description: Define the degree of an algebraic number as the smallest degree of any nonzero polynomial which has said number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
Ref | Expression |
---|---|
df-dgraa |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdgraa 37710 |
. 2
![]() | |
2 | vx |
. . 3
![]() ![]() | |
3 | caa 24069 |
. . 3
![]() ![]() | |
4 | vp |
. . . . . . . . . 10
![]() ![]() | |
5 | 4 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
6 | cdgr 23943 |
. . . . . . . . 9
![]() | |
7 | 5, 6 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() |
8 | vd |
. . . . . . . . 9
![]() ![]() | |
9 | 8 | cv 1482 |
. . . . . . . 8
![]() ![]() |
10 | 7, 9 | wceq 1483 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 2 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
12 | 11, 5 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() |
13 | cc0 9936 |
. . . . . . . 8
![]() ![]() | |
14 | 12, 13 | wceq 1483 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 10, 14 | wa 384 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | cq 11788 |
. . . . . . . 8
![]() ![]() | |
17 | cply 23940 |
. . . . . . . 8
![]() | |
18 | 16, 17 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
19 | c0p 23436 |
. . . . . . . 8
![]() ![]() ![]() | |
20 | 19 | csn 4177 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
21 | 18, 20 | cdif 3571 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 15, 4, 21 | wrex 2913 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | cn 11020 |
. . . . 5
![]() ![]() | |
24 | 22, 8, 23 | crab 2916 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | cr 9935 |
. . . 4
![]() ![]() | |
26 | clt 10074 |
. . . 4
![]() ![]() | |
27 | 24, 25, 26 | cinf 8347 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 2, 3, 27 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 1, 28 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: dgraaval 37714 dgraaf 37717 |
Copyright terms: Public domain | W3C validator |