Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaval Structured version   Visualization version   Unicode version

Theorem dgraaval 37714
Description: Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraaval  |-  ( A  e.  AA  ->  (degAA `  A )  = inf ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  A )  =  0 ) } ,  RR ,  <  ) )
Distinct variable group:    A, d, p

Proof of Theorem dgraaval
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( a  =  A  ->  (
p `  a )  =  ( p `  A ) )
21eqeq1d 2624 . . . . . 6  |-  ( a  =  A  ->  (
( p `  a
)  =  0  <->  (
p `  A )  =  0 ) )
32anbi2d 740 . . . . 5  |-  ( a  =  A  ->  (
( (deg `  p
)  =  d  /\  ( p `  a
)  =  0 )  <-> 
( (deg `  p
)  =  d  /\  ( p `  A
)  =  0 ) ) )
43rexbidv 3052 . . . 4  |-  ( a  =  A  ->  ( E. p  e.  (
(Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  a )  =  0 )  <->  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  A )  =  0 ) ) )
54rabbidv 3189 . . 3  |-  ( a  =  A  ->  { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  {
0p } ) ( (deg `  p
)  =  d  /\  ( p `  a
)  =  0 ) }  =  { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  {
0p } ) ( (deg `  p
)  =  d  /\  ( p `  A
)  =  0 ) } )
65infeq1d 8383 . 2  |-  ( a  =  A  -> inf ( { d  e.  NN  |  E. p  e.  (
(Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  a )  =  0 ) } ,  RR ,  <  )  = inf ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  A )  =  0 ) } ,  RR ,  <  ) )
7 df-dgraa 37712 . 2  |- degAA  =  (
a  e.  AA  |-> inf ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  a )  =  0 ) } ,  RR ,  <  ) )
8 ltso 10118 . . 3  |-  <  Or  RR
98infex 8399 . 2  |- inf ( { d  e.  NN  |  E. p  e.  (
(Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  A )  =  0 ) } ,  RR ,  <  )  e.  _V
106, 7, 9fvmpt 6282 1  |-  ( A  e.  AA  ->  (degAA `  A )  = inf ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  A )  =  0 ) } ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    \ cdif 3571   {csn 4177   ` cfv 5888  infcinf 8347   RRcr 9935   0cc0 9936    < clt 10074   NNcn 11020   QQcq 11788   0pc0p 23436  Polycply 23940  degcdgr 23943   AAcaa 24069  degAAcdgraa 37710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-dgraa 37712
This theorem is referenced by:  dgraalem  37715  dgraaub  37718
  Copyright terms: Public domain W3C validator