MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dip Structured version   Visualization version   Unicode version

Definition df-dip 27556
Description: Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of [ReedSimon] p. 63 and Theorem 6.44 of [Ponnusamy] p. 361. Vector addition is  ( 1st `  w
), the scalar product is  ( 2nd `  w
), and the norm is  n. (Contributed by NM, 10-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
df-dip  |-  .iOLD  =  ( u  e.  NrmCVec 
|->  ( x  e.  (
BaseSet `  u ) ,  y  e.  ( BaseSet `  u )  |->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( ( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  /  4
) ) )
Distinct variable group:    u, k, x, y

Detailed syntax breakdown of Definition df-dip
StepHypRef Expression
1 cdip 27555 . 2  class  .iOLD
2 vu . . 3  setvar  u
3 cnv 27439 . . 3  class  NrmCVec
4 vx . . . 4  setvar  x
5 vy . . . 4  setvar  y
62cv 1482 . . . . 5  class  u
7 cba 27441 . . . . 5  class  BaseSet
86, 7cfv 5888 . . . 4  class  ( BaseSet `  u )
9 c1 9937 . . . . . . 7  class  1
10 c4 11072 . . . . . . 7  class  4
11 cfz 12326 . . . . . . 7  class  ...
129, 10, 11co 6650 . . . . . 6  class  ( 1 ... 4 )
13 ci 9938 . . . . . . . 8  class  _i
14 vk . . . . . . . . 9  setvar  k
1514cv 1482 . . . . . . . 8  class  k
16 cexp 12860 . . . . . . . 8  class  ^
1713, 15, 16co 6650 . . . . . . 7  class  ( _i
^ k )
184cv 1482 . . . . . . . . . 10  class  x
195cv 1482 . . . . . . . . . . 11  class  y
20 cns 27442 . . . . . . . . . . . 12  class  .sOLD
216, 20cfv 5888 . . . . . . . . . . 11  class  ( .sOLD `  u )
2217, 19, 21co 6650 . . . . . . . . . 10  class  ( ( _i ^ k ) ( .sOLD `  u ) y )
23 cpv 27440 . . . . . . . . . . 11  class  +v
246, 23cfv 5888 . . . . . . . . . 10  class  ( +v
`  u )
2518, 22, 24co 6650 . . . . . . . . 9  class  ( x ( +v `  u
) ( ( _i
^ k ) ( .sOLD `  u
) y ) )
26 cnmcv 27445 . . . . . . . . . 10  class  normCV
276, 26cfv 5888 . . . . . . . . 9  class  ( normCV `  u )
2825, 27cfv 5888 . . . . . . . 8  class  ( (
normCV
`  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) )
29 c2 11070 . . . . . . . 8  class  2
3028, 29, 16co 6650 . . . . . . 7  class  ( ( ( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 )
31 cmul 9941 . . . . . . 7  class  x.
3217, 30, 31co 6650 . . . . . 6  class  ( ( _i ^ k )  x.  ( ( (
normCV
`  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 ) )
3312, 32, 14csu 14416 . . . . 5  class  sum_ k  e.  ( 1 ... 4
) ( ( _i
^ k )  x.  ( ( ( normCV `  u ) `  (
x ( +v `  u ) ( ( _i ^ k ) ( .sOLD `  u ) y ) ) ) ^ 2 ) )
34 cdiv 10684 . . . . 5  class  /
3533, 10, 34co 6650 . . . 4  class  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( ( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  /  4
)
364, 5, 8, 8, 35cmpt2 6652 . . 3  class  ( x  e.  ( BaseSet `  u
) ,  y  e.  ( BaseSet `  u )  |->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( ( normCV `  u
) `  ( x
( +v `  u
) ( ( _i
^ k ) ( .sOLD `  u
) y ) ) ) ^ 2 ) )  /  4 ) )
372, 3, 36cmpt 4729 . 2  class  ( u  e.  NrmCVec  |->  ( x  e.  ( BaseSet `  u ) ,  y  e.  ( BaseSet
`  u )  |->  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( ( normCV `  u
) `  ( x
( +v `  u
) ( ( _i
^ k ) ( .sOLD `  u
) y ) ) ) ^ 2 ) )  /  4 ) ) )
381, 37wceq 1483 1  wff  .iOLD  =  ( u  e.  NrmCVec 
|->  ( x  e.  (
BaseSet `  u ) ,  y  e.  ( BaseSet `  u )  |->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( ( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  /  4
) ) )
Colors of variables: wff setvar class
This definition is referenced by:  dipfval  27557
  Copyright terms: Public domain W3C validator