![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-dip | Structured version Visualization version Unicode version |
Description: Define a function that
maps a normed complex vector space to its inner
product operation in case its norm satisfies the parallelogram identity
(otherwise the operation is still defined, but not meaningful). Based
on Exercise 4(a) of [ReedSimon] p. 63
and Theorem 6.44 of [Ponnusamy]
p. 361. Vector addition is ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-dip |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdip 27555 |
. 2
![]() ![]() ![]() | |
2 | vu |
. . 3
![]() ![]() | |
3 | cnv 27439 |
. . 3
![]() ![]() | |
4 | vx |
. . . 4
![]() ![]() | |
5 | vy |
. . . 4
![]() ![]() | |
6 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
7 | cba 27441 |
. . . . 5
![]() ![]() | |
8 | 6, 7 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
9 | c1 9937 |
. . . . . . 7
![]() ![]() | |
10 | c4 11072 |
. . . . . . 7
![]() ![]() | |
11 | cfz 12326 |
. . . . . . 7
![]() ![]() | |
12 | 9, 10, 11 | co 6650 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
13 | ci 9938 |
. . . . . . . 8
![]() ![]() | |
14 | vk |
. . . . . . . . 9
![]() ![]() | |
15 | 14 | cv 1482 |
. . . . . . . 8
![]() ![]() |
16 | cexp 12860 |
. . . . . . . 8
![]() ![]() | |
17 | 13, 15, 16 | co 6650 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
18 | 4 | cv 1482 |
. . . . . . . . . 10
![]() ![]() |
19 | 5 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
20 | cns 27442 |
. . . . . . . . . . . 12
![]() ![]() ![]() | |
21 | 6, 20 | cfv 5888 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 17, 19, 21 | co 6650 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | cpv 27440 |
. . . . . . . . . . 11
![]() ![]() | |
24 | 6, 23 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
25 | 18, 22, 24 | co 6650 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | cnmcv 27445 |
. . . . . . . . . 10
![]() ![]() | |
27 | 6, 26 | cfv 5888 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
28 | 25, 27 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | c2 11070 |
. . . . . . . 8
![]() ![]() | |
30 | 28, 29, 16 | co 6650 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | cmul 9941 |
. . . . . . 7
![]() ![]() | |
32 | 17, 30, 31 | co 6650 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 12, 32, 14 | csu 14416 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | cdiv 10684 |
. . . . 5
![]() ![]() | |
35 | 33, 10, 34 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 4, 5, 8, 8, 35 | cmpt2 6652 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 2, 3, 36 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 1, 37 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: dipfval 27557 |
Copyright terms: Public domain | W3C validator |