MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipfval Structured version   Visualization version   Unicode version

Theorem dipfval 27557
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1  |-  X  =  ( BaseSet `  U )
dipfval.2  |-  G  =  ( +v `  U
)
dipfval.4  |-  S  =  ( .sOLD `  U )
dipfval.6  |-  N  =  ( normCV `  U )
dipfval.7  |-  P  =  ( .iOLD `  U )
Assertion
Ref Expression
dipfval  |-  ( U  e.  NrmCVec  ->  P  =  ( x  e.  X , 
y  e.  X  |->  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  (
x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) )  /  4 ) ) )
Distinct variable groups:    x, k,
y, G    k, N, x, y    S, k, x, y    U, k, x, y   
k, X, x, y
Allowed substitution hints:    P( x, y, k)

Proof of Theorem dipfval
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 dipfval.7 . 2  |-  P  =  ( .iOLD `  U )
2 fveq2 6191 . . . . 5  |-  ( u  =  U  ->  ( BaseSet
`  u )  =  ( BaseSet `  U )
)
3 dipfval.1 . . . . 5  |-  X  =  ( BaseSet `  U )
42, 3syl6eqr 2674 . . . 4  |-  ( u  =  U  ->  ( BaseSet
`  u )  =  X )
5 fveq2 6191 . . . . . . . . . 10  |-  ( u  =  U  ->  ( normCV `  u )  =  (
normCV
`  U ) )
6 dipfval.6 . . . . . . . . . 10  |-  N  =  ( normCV `  U )
75, 6syl6eqr 2674 . . . . . . . . 9  |-  ( u  =  U  ->  ( normCV `  u )  =  N )
8 fveq2 6191 . . . . . . . . . . 11  |-  ( u  =  U  ->  ( +v `  u )  =  ( +v `  U
) )
9 dipfval.2 . . . . . . . . . . 11  |-  G  =  ( +v `  U
)
108, 9syl6eqr 2674 . . . . . . . . . 10  |-  ( u  =  U  ->  ( +v `  u )  =  G )
11 eqidd 2623 . . . . . . . . . 10  |-  ( u  =  U  ->  x  =  x )
12 fveq2 6191 . . . . . . . . . . . 12  |-  ( u  =  U  ->  ( .sOLD `  u )  =  ( .sOLD `  U ) )
13 dipfval.4 . . . . . . . . . . . 12  |-  S  =  ( .sOLD `  U )
1412, 13syl6eqr 2674 . . . . . . . . . . 11  |-  ( u  =  U  ->  ( .sOLD `  u )  =  S )
1514oveqd 6667 . . . . . . . . . 10  |-  ( u  =  U  ->  (
( _i ^ k
) ( .sOLD `  u ) y )  =  ( ( _i
^ k ) S y ) )
1610, 11, 15oveq123d 6671 . . . . . . . . 9  |-  ( u  =  U  ->  (
x ( +v `  u ) ( ( _i ^ k ) ( .sOLD `  u ) y ) )  =  ( x G ( ( _i
^ k ) S y ) ) )
177, 16fveq12d 6197 . . . . . . . 8  |-  ( u  =  U  ->  (
( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) )  =  ( N `  ( x G ( ( _i
^ k ) S y ) ) ) )
1817oveq1d 6665 . . . . . . 7  |-  ( u  =  U  ->  (
( ( normCV `  u
) `  ( x
( +v `  u
) ( ( _i
^ k ) ( .sOLD `  u
) y ) ) ) ^ 2 )  =  ( ( N `
 ( x G ( ( _i ^
k ) S y ) ) ) ^
2 ) )
1918oveq2d 6666 . . . . . 6  |-  ( u  =  U  ->  (
( _i ^ k
)  x.  ( ( ( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  =  ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) ) )
2019sumeq2sdv 14435 . . . . 5  |-  ( u  =  U  ->  sum_ k  e.  ( 1 ... 4
) ( ( _i
^ k )  x.  ( ( ( normCV `  u ) `  (
x ( +v `  u ) ( ( _i ^ k ) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  =  sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) ) )
2120oveq1d 6665 . . . 4  |-  ( u  =  U  ->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( ( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  /  4
)  =  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  /  4 ) )
224, 4, 21mpt2eq123dv 6717 . . 3  |-  ( u  =  U  ->  (
x  e.  ( BaseSet `  u ) ,  y  e.  ( BaseSet `  u
)  |->  ( sum_ k  e.  ( 1 ... 4
) ( ( _i
^ k )  x.  ( ( ( normCV `  u ) `  (
x ( +v `  u ) ( ( _i ^ k ) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  /  4
) )  =  ( x  e.  X , 
y  e.  X  |->  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  (
x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) )  /  4 ) ) )
23 df-dip 27556 . . 3  |-  .iOLD  =  ( u  e.  NrmCVec 
|->  ( x  e.  (
BaseSet `  u ) ,  y  e.  ( BaseSet `  u )  |->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( ( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  /  4
) ) )
24 fvex 6201 . . . . 5  |-  ( BaseSet `  U )  e.  _V
253, 24eqeltri 2697 . . . 4  |-  X  e. 
_V
2625, 25mpt2ex 7247 . . 3  |-  ( x  e.  X ,  y  e.  X  |->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  /  4 ) )  e.  _V
2722, 23, 26fvmpt 6282 . 2  |-  ( U  e.  NrmCVec  ->  ( .iOLD `  U )  =  ( x  e.  X , 
y  e.  X  |->  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  (
x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) )  /  4 ) ) )
281, 27syl5eq 2668 1  |-  ( U  e.  NrmCVec  ->  P  =  ( x  e.  X , 
y  e.  X  |->  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  (
x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) )  /  4 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1c1 9937   _ici 9938    x. cmul 9941    / cdiv 10684   2c2 11070   4c4 11072   ...cfz 12326   ^cexp 12860   sum_csu 14416   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   normCVcnmcv 27445   .iOLDcdip 27555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417  df-dip 27556
This theorem is referenced by:  ipval  27558  ipf  27568  dipcn  27575
  Copyright terms: Public domain W3C validator