![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ditg | Structured version Visualization version Unicode version |
Description: Define the directed
integral, which is just a regular integral but with a
sign change when the limits are interchanged. The ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-ditg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx |
. . 3
![]() ![]() | |
2 | cA |
. . 3
![]() ![]() | |
3 | cB |
. . 3
![]() ![]() | |
4 | cC |
. . 3
![]() ![]() | |
5 | 1, 2, 3, 4 | cdit 23610 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | cle 10075 |
. . . 4
![]() ![]() | |
7 | 2, 3, 6 | wbr 4653 |
. . 3
![]() ![]() ![]() ![]() |
8 | cioo 12175 |
. . . . 5
![]() ![]() | |
9 | 2, 3, 8 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
10 | 1, 9, 4 | citg 23387 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 3, 2, 8 | co 6650 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
12 | 1, 11, 4 | citg 23387 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | cneg 10267 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 7, 10, 13 | cif 4086 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 5, 14 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: ditgeq1 23612 ditgeq2 23613 ditgeq3 23614 ditgex 23616 ditg0 23617 cbvditg 23618 ditgpos 23620 ditgneg 23621 ditgeq3d 40180 |
Copyright terms: Public domain | W3C validator |