| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-drng | Structured version Visualization version Unicode version | ||
| Description: Define class of all division rings. A division ring is a ring in which the set of units is exactly the nonzero elements of the ring. (Contributed by NM, 18-Oct-2012.) |
| Ref | Expression |
|---|---|
| df-drng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdr 18747 |
. 2
| |
| 2 | vr |
. . . . . 6
| |
| 3 | 2 | cv 1482 |
. . . . 5
|
| 4 | cui 18639 |
. . . . 5
| |
| 5 | 3, 4 | cfv 5888 |
. . . 4
|
| 6 | cbs 15857 |
. . . . . 6
| |
| 7 | 3, 6 | cfv 5888 |
. . . . 5
|
| 8 | c0g 16100 |
. . . . . . 7
| |
| 9 | 3, 8 | cfv 5888 |
. . . . . 6
|
| 10 | 9 | csn 4177 |
. . . . 5
|
| 11 | 7, 10 | cdif 3571 |
. . . 4
|
| 12 | 5, 11 | wceq 1483 |
. . 3
|
| 13 | crg 18547 |
. . 3
| |
| 14 | 12, 2, 13 | crab 2916 |
. 2
|
| 15 | 1, 14 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: isdrng 18751 |
| Copyright terms: Public domain | W3C validator |