| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-field | Structured version Visualization version Unicode version | ||
| Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| Ref | Expression |
|---|---|
| df-field |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfield 18748 |
. 2
| |
| 2 | cdr 18747 |
. . 3
| |
| 3 | ccrg 18548 |
. . 3
| |
| 4 | 2, 3 | cin 3573 |
. 2
|
| 5 | 1, 4 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: isfld 18756 fldc 42083 fldhmsubc 42084 fldcALTV 42101 fldhmsubcALTV 42102 |
| Copyright terms: Public domain | W3C validator |