MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-field Structured version   Visualization version   Unicode version

Definition df-field 18750
Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.)
Assertion
Ref Expression
df-field  |- Field  =  (
DivRing  i^i  CRing )

Detailed syntax breakdown of Definition df-field
StepHypRef Expression
1 cfield 18748 . 2  class Field
2 cdr 18747 . . 3  class  DivRing
3 ccrg 18548 . . 3  class  CRing
42, 3cin 3573 . 2  class  ( DivRing  i^i  CRing )
51, 4wceq 1483 1  wff Field  =  (
DivRing  i^i  CRing )
Colors of variables: wff setvar class
This definition is referenced by:  isfld  18756  fldc  42083  fldhmsubc  42084  fldcALTV  42101  fldhmsubcALTV  42102
  Copyright terms: Public domain W3C validator