MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-estrc Structured version   Visualization version   Unicode version

Definition df-estrc 16763
Description: Definition of the category ExtStr of extensible structures. This is the category whose objects are all sets in a universe  u regarded as extensible structures and whose morphisms are the functions between their base sets. If a set is not a real extensible structure, it is regarded as extensible structure with an empty base set. Because of bascnvimaeqv 16761 we do not need to restrict the universe to sets which "have a base". Generally, we will take  u to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Proposed by Mario Carneiro, 5-Mar-2020.) (Contributed by AV, 7-Mar-2020.)
Assertion
Ref Expression
df-estrc  |- ExtStrCat  =  ( u  e.  _V  |->  {
<. ( Base `  ndx ) ,  u >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( ( Base `  y )  ^m  ( Base `  x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( (
Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) ) ,  f  e.  ( ( Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )  |->  ( g  o.  f ) ) )
>. } )
Distinct variable group:    f, g, u, v, x, y, z

Detailed syntax breakdown of Definition df-estrc
StepHypRef Expression
1 cestrc 16762 . 2  class ExtStrCat
2 vu . . 3  setvar  u
3 cvv 3200 . . 3  class  _V
4 cnx 15854 . . . . . 6  class  ndx
5 cbs 15857 . . . . . 6  class  Base
64, 5cfv 5888 . . . . 5  class  ( Base `  ndx )
72cv 1482 . . . . 5  class  u
86, 7cop 4183 . . . 4  class  <. ( Base `  ndx ) ,  u >.
9 chom 15952 . . . . . 6  class  Hom
104, 9cfv 5888 . . . . 5  class  ( Hom  `  ndx )
11 vx . . . . . 6  setvar  x
12 vy . . . . . 6  setvar  y
1312cv 1482 . . . . . . . 8  class  y
1413, 5cfv 5888 . . . . . . 7  class  ( Base `  y )
1511cv 1482 . . . . . . . 8  class  x
1615, 5cfv 5888 . . . . . . 7  class  ( Base `  x )
17 cmap 7857 . . . . . . 7  class  ^m
1814, 16, 17co 6650 . . . . . 6  class  ( (
Base `  y )  ^m  ( Base `  x
) )
1911, 12, 7, 7, 18cmpt2 6652 . . . . 5  class  ( x  e.  u ,  y  e.  u  |->  ( (
Base `  y )  ^m  ( Base `  x
) ) )
2010, 19cop 4183 . . . 4  class  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )
>.
21 cco 15953 . . . . . 6  class comp
224, 21cfv 5888 . . . . 5  class  (comp `  ndx )
23 vv . . . . . 6  setvar  v
24 vz . . . . . 6  setvar  z
257, 7cxp 5112 . . . . . 6  class  ( u  X.  u )
26 vg . . . . . . 7  setvar  g
27 vf . . . . . . 7  setvar  f
2824cv 1482 . . . . . . . . 9  class  z
2928, 5cfv 5888 . . . . . . . 8  class  ( Base `  z )
3023cv 1482 . . . . . . . . . 10  class  v
31 c2nd 7167 . . . . . . . . . 10  class  2nd
3230, 31cfv 5888 . . . . . . . . 9  class  ( 2nd `  v )
3332, 5cfv 5888 . . . . . . . 8  class  ( Base `  ( 2nd `  v
) )
3429, 33, 17co 6650 . . . . . . 7  class  ( (
Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) )
35 c1st 7166 . . . . . . . . . 10  class  1st
3630, 35cfv 5888 . . . . . . . . 9  class  ( 1st `  v )
3736, 5cfv 5888 . . . . . . . 8  class  ( Base `  ( 1st `  v
) )
3833, 37, 17co 6650 . . . . . . 7  class  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )
3926cv 1482 . . . . . . . 8  class  g
4027cv 1482 . . . . . . . 8  class  f
4139, 40ccom 5118 . . . . . . 7  class  ( g  o.  f )
4226, 27, 34, 38, 41cmpt2 6652 . . . . . 6  class  ( g  e.  ( ( Base `  z )  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) )
4323, 24, 25, 7, 42cmpt2 6652 . . . . 5  class  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( ( Base `  z )  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) )
4422, 43cop 4183 . . . 4  class  <. (comp ` 
ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( (
Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) ) ,  f  e.  ( ( Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )  |->  ( g  o.  f ) ) )
>.
458, 20, 44ctp 4181 . . 3  class  { <. (
Base `  ndx ) ,  u >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( ( Base `  z )  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) ) >. }
462, 3, 45cmpt 4729 . 2  class  ( u  e.  _V  |->  { <. (
Base `  ndx ) ,  u >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( ( Base `  z )  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) ) >. } )
471, 46wceq 1483 1  wff ExtStrCat  =  ( u  e.  _V  |->  {
<. ( Base `  ndx ) ,  u >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( ( Base `  y )  ^m  ( Base `  x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( (
Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) ) ,  f  e.  ( ( Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )  |->  ( g  o.  f ) ) )
>. } )
Colors of variables: wff setvar class
This definition is referenced by:  estrcval  16764
  Copyright terms: Public domain W3C validator