MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrcval Structured version   Visualization version   Unicode version

Theorem estrcval 16764
Description: Value of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcval.c  |-  C  =  (ExtStrCat `  U )
estrcval.u  |-  ( ph  ->  U  e.  V )
estrcval.h  |-  ( ph  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( (
Base `  y )  ^m  ( Base `  x
) ) ) )
estrcval.o  |-  ( ph  ->  .x.  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( ( Base `  z )  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) ) )
Assertion
Ref Expression
estrcval  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Distinct variable groups:    f, g,
v, x, y, z    ph, v, x, y, z   
v, U, x, y, z
Allowed substitution hints:    ph( f, g)    C( x, y, z, v, f, g)    .x. ( x, y, z, v, f, g)    U( f, g)    H( x, y, z, v, f, g)    V( x, y, z, v, f, g)

Proof of Theorem estrcval
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 estrcval.c . 2  |-  C  =  (ExtStrCat `  U )
2 df-estrc 16763 . . . 4  |- ExtStrCat  =  ( u  e.  _V  |->  {
<. ( Base `  ndx ) ,  u >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( ( Base `  y )  ^m  ( Base `  x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( (
Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) ) ,  f  e.  ( ( Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )  |->  ( g  o.  f ) ) )
>. } )
32a1i 11 . . 3  |-  ( ph  -> ExtStrCat  =  ( u  e. 
_V  |->  { <. ( Base `  ndx ) ,  u >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( ( Base `  z )  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) ) >. } ) )
4 simpr 477 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  u  =  U )
54opeq2d 4409 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  <. ( Base `  ndx ) ,  u >.  =  <. (
Base `  ndx ) ,  U >. )
6 eqidd 2623 . . . . . . 7  |-  ( (
ph  /\  u  =  U )  ->  (
( Base `  y )  ^m  ( Base `  x
) )  =  ( ( Base `  y
)  ^m  ( Base `  x ) ) )
74, 4, 6mpt2eq123dv 6717 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  (
x  e.  u ,  y  e.  u  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )  =  ( x  e.  U ,  y  e.  U  |->  ( ( Base `  y )  ^m  ( Base `  x ) ) ) )
8 estrcval.h . . . . . . 7  |-  ( ph  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( (
Base `  y )  ^m  ( Base `  x
) ) ) )
98adantr 481 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  H  =  ( x  e.  U ,  y  e.  U  |->  ( ( Base `  y )  ^m  ( Base `  x ) ) ) )
107, 9eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  (
x  e.  u ,  y  e.  u  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )  =  H )
1110opeq2d 4409 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )
>.  =  <. ( Hom  `  ndx ) ,  H >. )
124sqxpeqd 5141 . . . . . . 7  |-  ( (
ph  /\  u  =  U )  ->  (
u  X.  u )  =  ( U  X.  U ) )
13 eqidd 2623 . . . . . . 7  |-  ( (
ph  /\  u  =  U )  ->  (
g  e.  ( (
Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) ) ,  f  e.  ( ( Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )  |->  ( g  o.  f ) )  =  ( g  e.  ( ( Base `  z
)  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) )
1412, 4, 13mpt2eq123dv 6717 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  (
v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( (
Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) ) ,  f  e.  ( ( Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )  |->  ( g  o.  f ) ) )  =  ( v  e.  ( U  X.  U
) ,  z  e.  U  |->  ( g  e.  ( ( Base `  z
)  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) ) )
15 estrcval.o . . . . . . 7  |-  ( ph  ->  .x.  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( ( Base `  z )  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) ) )
1615adantr 481 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  .x.  =  ( v  e.  ( U  X.  U ) ,  z  e.  U  |->  ( g  e.  ( ( Base `  z
)  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) ) )
1714, 16eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  (
v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( (
Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) ) ,  f  e.  ( ( Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )  |->  ( g  o.  f ) ) )  =  .x.  )
1817opeq2d 4409 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  <. (comp ` 
ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( (
Base `  z )  ^m  ( Base `  ( 2nd `  v ) ) ) ,  f  e.  ( ( Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) )  |->  ( g  o.  f ) ) )
>.  =  <. (comp `  ndx ) ,  .x.  >. )
195, 11, 18tpeq123d 4283 . . 3  |-  ( (
ph  /\  u  =  U )  ->  { <. (
Base `  ndx ) ,  u >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( ( Base `  z )  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) ) >. }  =  { <. ( Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
20 estrcval.u . . . 4  |-  ( ph  ->  U  e.  V )
21 elex 3212 . . . 4  |-  ( U  e.  V  ->  U  e.  _V )
2220, 21syl 17 . . 3  |-  ( ph  ->  U  e.  _V )
23 tpex 6957 . . . 4  |-  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. }  e.  _V
2423a1i 11 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  U >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. }  e.  _V )
253, 19, 22, 24fvmptd 6288 . 2  |-  ( ph  ->  (ExtStrCat `  U )  =  { <. ( Base `  ndx ) ,  U >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
261, 25syl5eq 2668 1  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  U >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {ctp 4181   <.cop 4183    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   ndxcnx 15854   Basecbs 15857   Hom chom 15952  compcco 15953  ExtStrCatcestrc 16762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-estrc 16763
This theorem is referenced by:  estrcbas  16765  estrchomfval  16766  estrccofval  16769  dfrngc2  41972  dfringc2  42018
  Copyright terms: Public domain W3C validator