MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fm Structured version   Visualization version   Unicode version

Definition df-fm 21742
Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.)
Assertion
Ref Expression
df-fm  |-  FilMap  =  ( x  e.  _V , 
f  e.  _V  |->  ( y  e.  ( fBas `  dom  f )  |->  ( x filGen ran  ( t  e.  y  |->  ( f
" t ) ) ) ) )
Distinct variable group:    t, f, x, y

Detailed syntax breakdown of Definition df-fm
StepHypRef Expression
1 cfm 21737 . 2  class  FilMap
2 vx . . 3  setvar  x
3 vf . . 3  setvar  f
4 cvv 3200 . . 3  class  _V
5 vy . . . 4  setvar  y
63cv 1482 . . . . . 6  class  f
76cdm 5114 . . . . 5  class  dom  f
8 cfbas 19734 . . . . 5  class  fBas
97, 8cfv 5888 . . . 4  class  ( fBas `  dom  f )
102cv 1482 . . . . 5  class  x
11 vt . . . . . . 7  setvar  t
125cv 1482 . . . . . . 7  class  y
1311cv 1482 . . . . . . . 8  class  t
146, 13cima 5117 . . . . . . 7  class  ( f
" t )
1511, 12, 14cmpt 4729 . . . . . 6  class  ( t  e.  y  |->  ( f
" t ) )
1615crn 5115 . . . . 5  class  ran  (
t  e.  y  |->  ( f " t ) )
17 cfg 19735 . . . . 5  class  filGen
1810, 16, 17co 6650 . . . 4  class  ( x
filGen ran  ( t  e.  y  |->  ( f "
t ) ) )
195, 9, 18cmpt 4729 . . 3  class  ( y  e.  ( fBas `  dom  f )  |->  ( x
filGen ran  ( t  e.  y  |->  ( f "
t ) ) ) )
202, 3, 4, 4, 19cmpt2 6652 . 2  class  ( x  e.  _V ,  f  e.  _V  |->  ( y  e.  ( fBas `  dom  f )  |->  ( x
filGen ran  ( t  e.  y  |->  ( f "
t ) ) ) ) )
211, 20wceq 1483 1  wff  FilMap  =  ( x  e.  _V , 
f  e.  _V  |->  ( y  e.  ( fBas `  dom  f )  |->  ( x filGen ran  ( t  e.  y  |->  ( f
" t ) ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  fmval  21747  fmf  21749
  Copyright terms: Public domain W3C validator