![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-frgr | Structured version Visualization version Unicode version |
Description: Define the class of all friendship graphs: a simple graph is called a friendship graph if every pair of its vertices has exactly one common neighbor. This condition is called the friendship condition , see definition in [MertziosUnger] p. 152. (Contributed by Alexander van der Vekens and Mario Carneiro, 2-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
df-frgr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfrgr 27120 |
. 2
![]() | |
2 | vg |
. . . . . 6
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
4 | cusgr 26044 |
. . . . 5
![]() | |
5 | 3, 4 | wcel 1990 |
. . . 4
![]() ![]() ![]() |
6 | vx |
. . . . . . . . . . . . 13
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . . . . . . . 12
![]() ![]() |
8 | vk |
. . . . . . . . . . . . 13
![]() ![]() | |
9 | 8 | cv 1482 |
. . . . . . . . . . . 12
![]() ![]() |
10 | 7, 9 | cpr 4179 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() |
11 | vl |
. . . . . . . . . . . . 13
![]() ![]() | |
12 | 11 | cv 1482 |
. . . . . . . . . . . 12
![]() ![]() |
13 | 7, 12 | cpr 4179 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() |
14 | 10, 13 | cpr 4179 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | ve |
. . . . . . . . . . 11
![]() ![]() | |
16 | 15 | cv 1482 |
. . . . . . . . . 10
![]() ![]() |
17 | 14, 16 | wss 3574 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | vv |
. . . . . . . . . 10
![]() ![]() | |
19 | 18 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
20 | 17, 6, 19 | wreu 2914 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 9 | csn 4177 |
. . . . . . . . 9
![]() ![]() ![]() ![]() |
22 | 19, 21 | cdif 3571 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 20, 11, 22 | wral 2912 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 23, 8, 19 | wral 2912 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | cedg 25939 |
. . . . . . 7
![]() | |
26 | 3, 25 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
27 | 24, 15, 26 | wsbc 3435 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | cvtx 25874 |
. . . . . 6
![]() | |
29 | 3, 28 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
30 | 27, 18, 29 | wsbc 3435 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 5, 30 | wa 384 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 31, 2 | cab 2608 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 1, 32 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: isfrgr 27122 |
Copyright terms: Public domain | W3C validator |