| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-frgr | Structured version Visualization version Unicode version | ||
| Description: Define the class of all friendship graphs: a simple graph is called a friendship graph if every pair of its vertices has exactly one common neighbor. This condition is called the friendship condition , see definition in [MertziosUnger] p. 152. (Contributed by Alexander van der Vekens and Mario Carneiro, 2-Oct-2017.) (Revised by AV, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| df-frgr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfrgr 27120 |
. 2
| |
| 2 | vg |
. . . . . 6
| |
| 3 | 2 | cv 1482 |
. . . . 5
|
| 4 | cusgr 26044 |
. . . . 5
| |
| 5 | 3, 4 | wcel 1990 |
. . . 4
|
| 6 | vx |
. . . . . . . . . . . . 13
| |
| 7 | 6 | cv 1482 |
. . . . . . . . . . . 12
|
| 8 | vk |
. . . . . . . . . . . . 13
| |
| 9 | 8 | cv 1482 |
. . . . . . . . . . . 12
|
| 10 | 7, 9 | cpr 4179 |
. . . . . . . . . . 11
|
| 11 | vl |
. . . . . . . . . . . . 13
| |
| 12 | 11 | cv 1482 |
. . . . . . . . . . . 12
|
| 13 | 7, 12 | cpr 4179 |
. . . . . . . . . . 11
|
| 14 | 10, 13 | cpr 4179 |
. . . . . . . . . 10
|
| 15 | ve |
. . . . . . . . . . 11
| |
| 16 | 15 | cv 1482 |
. . . . . . . . . 10
|
| 17 | 14, 16 | wss 3574 |
. . . . . . . . 9
|
| 18 | vv |
. . . . . . . . . 10
| |
| 19 | 18 | cv 1482 |
. . . . . . . . 9
|
| 20 | 17, 6, 19 | wreu 2914 |
. . . . . . . 8
|
| 21 | 9 | csn 4177 |
. . . . . . . . 9
|
| 22 | 19, 21 | cdif 3571 |
. . . . . . . 8
|
| 23 | 20, 11, 22 | wral 2912 |
. . . . . . 7
|
| 24 | 23, 8, 19 | wral 2912 |
. . . . . 6
|
| 25 | cedg 25939 |
. . . . . . 7
| |
| 26 | 3, 25 | cfv 5888 |
. . . . . 6
|
| 27 | 24, 15, 26 | wsbc 3435 |
. . . . 5
|
| 28 | cvtx 25874 |
. . . . . 6
| |
| 29 | 3, 28 | cfv 5888 |
. . . . 5
|
| 30 | 27, 18, 29 | wsbc 3435 |
. . . 4
|
| 31 | 5, 30 | wa 384 |
. . 3
|
| 32 | 31, 2 | cab 2608 |
. 2
|
| 33 | 1, 32 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: isfrgr 27122 |
| Copyright terms: Public domain | W3C validator |