Detailed syntax breakdown of Definition df-frgr
| Step | Hyp | Ref
| Expression |
| 1 | | cfrgr 27120 |
. 2
class
FriendGraph |
| 2 | | vg |
. . . . . 6
setvar 𝑔 |
| 3 | 2 | cv 1482 |
. . . . 5
class 𝑔 |
| 4 | | cusgr 26044 |
. . . . 5
class
USGraph |
| 5 | 3, 4 | wcel 1990 |
. . . 4
wff 𝑔 ∈ USGraph |
| 6 | | vx |
. . . . . . . . . . . . 13
setvar 𝑥 |
| 7 | 6 | cv 1482 |
. . . . . . . . . . . 12
class 𝑥 |
| 8 | | vk |
. . . . . . . . . . . . 13
setvar 𝑘 |
| 9 | 8 | cv 1482 |
. . . . . . . . . . . 12
class 𝑘 |
| 10 | 7, 9 | cpr 4179 |
. . . . . . . . . . 11
class {𝑥, 𝑘} |
| 11 | | vl |
. . . . . . . . . . . . 13
setvar 𝑙 |
| 12 | 11 | cv 1482 |
. . . . . . . . . . . 12
class 𝑙 |
| 13 | 7, 12 | cpr 4179 |
. . . . . . . . . . 11
class {𝑥, 𝑙} |
| 14 | 10, 13 | cpr 4179 |
. . . . . . . . . 10
class {{𝑥, 𝑘}, {𝑥, 𝑙}} |
| 15 | | ve |
. . . . . . . . . . 11
setvar 𝑒 |
| 16 | 15 | cv 1482 |
. . . . . . . . . 10
class 𝑒 |
| 17 | 14, 16 | wss 3574 |
. . . . . . . . 9
wff {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 18 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
| 19 | 18 | cv 1482 |
. . . . . . . . 9
class 𝑣 |
| 20 | 17, 6, 19 | wreu 2914 |
. . . . . . . 8
wff
∃!𝑥 ∈
𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 21 | 9 | csn 4177 |
. . . . . . . . 9
class {𝑘} |
| 22 | 19, 21 | cdif 3571 |
. . . . . . . 8
class (𝑣 ∖ {𝑘}) |
| 23 | 20, 11, 22 | wral 2912 |
. . . . . . 7
wff
∀𝑙 ∈
(𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 24 | 23, 8, 19 | wral 2912 |
. . . . . 6
wff
∀𝑘 ∈
𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 25 | | cedg 25939 |
. . . . . . 7
class
Edg |
| 26 | 3, 25 | cfv 5888 |
. . . . . 6
class
(Edg‘𝑔) |
| 27 | 24, 15, 26 | wsbc 3435 |
. . . . 5
wff
[(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 28 | | cvtx 25874 |
. . . . . 6
class
Vtx |
| 29 | 3, 28 | cfv 5888 |
. . . . 5
class
(Vtx‘𝑔) |
| 30 | 27, 18, 29 | wsbc 3435 |
. . . 4
wff
[(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒 |
| 31 | 5, 30 | wa 384 |
. . 3
wff (𝑔 ∈ USGraph ∧
[(Vtx‘𝑔) /
𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒) |
| 32 | 31, 2 | cab 2608 |
. 2
class {𝑔 ∣ (𝑔 ∈ USGraph ∧
[(Vtx‘𝑔) /
𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒)} |
| 33 | 1, 32 | wceq 1483 |
1
wff
FriendGraph = {𝑔 ∣
(𝑔 ∈ USGraph ∧
[(Vtx‘𝑔) /
𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒)} |