MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hash Structured version   Visualization version   Unicode version

Definition df-hash 13118
Description: Define the set size function  #, which gives the cardinality of a finite set as a member of 
NN0, and assigns all infinite sets the value +oo. For example,  ( # `  {
0 ,  1 ,  2 } )  =  3 (ex-hash 27310). (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
df-hash  |-  #  =  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card )  u.  (
( _V  \  Fin )  X.  { +oo }
) )

Detailed syntax breakdown of Definition df-hash
StepHypRef Expression
1 chash 13117 . 2  class  #
2 vx . . . . . . 7  setvar  x
3 cvv 3200 . . . . . . 7  class  _V
42cv 1482 . . . . . . . 8  class  x
5 c1 9937 . . . . . . . 8  class  1
6 caddc 9939 . . . . . . . 8  class  +
74, 5, 6co 6650 . . . . . . 7  class  ( x  +  1 )
82, 3, 7cmpt 4729 . . . . . 6  class  ( x  e.  _V  |->  ( x  +  1 ) )
9 cc0 9936 . . . . . 6  class  0
108, 9crdg 7505 . . . . 5  class  rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )
11 com 7065 . . . . 5  class  om
1210, 11cres 5116 . . . 4  class  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )
13 ccrd 8761 . . . 4  class  card
1412, 13ccom 5118 . . 3  class  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )
15 cfn 7955 . . . . 5  class  Fin
163, 15cdif 3571 . . . 4  class  ( _V 
\  Fin )
17 cpnf 10071 . . . . 5  class +oo
1817csn 4177 . . . 4  class  { +oo }
1916, 18cxp 5112 . . 3  class  ( ( _V  \  Fin )  X.  { +oo } )
2014, 19cun 3572 . 2  class  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  u.  ( ( _V  \  Fin )  X. 
{ +oo } ) )
211, 20wceq 1483 1  wff  #  =  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card )  u.  (
( _V  \  Fin )  X.  { +oo }
) )
Colors of variables: wff setvar class
This definition is referenced by:  hashgval  13120  hashinf  13122  hashfxnn0  13124  hashfOLD  13126
  Copyright terms: Public domain W3C validator