MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgval Structured version   Visualization version   Unicode version

Theorem hashgval 13120
Description: The value of the  # function in terms of the mapping  G from  om to  NN0. The proof avoids the use of ax-ac 9281. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypothesis
Ref Expression
hashgval.1  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
Assertion
Ref Expression
hashgval  |-  ( A  e.  Fin  ->  ( G `  ( card `  A ) )  =  ( # `  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    G( x)

Proof of Theorem hashgval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 resundir 5411 . . . . . 6  |-  ( ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )  u.  (
( _V  \  Fin )  X.  { +oo }
) )  |`  Fin )  =  ( ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  |`  Fin )  u.  ( ( ( _V 
\  Fin )  X.  { +oo } )  |`  Fin )
)
2 eqid 2622 . . . . . . . . . 10  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  =  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )
3 eqid 2622 . . . . . . . . . 10  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card )
42, 3hashkf 13119 . . . . . . . . 9  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card ) : Fin --> NN0
5 ffn 6045 . . . . . . . . 9  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card ) : Fin --> NN0  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  Fn  Fin )
6 fnresdm 6000 . . . . . . . . 9  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  Fn  Fin  ->  (
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )  |`  Fin )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card ) )
74, 5, 6mp2b 10 . . . . . . . 8  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  |`  Fin )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )
8 incom 3805 . . . . . . . . . 10  |-  ( ( _V  \  Fin )  i^i  Fin )  =  ( Fin  i^i  ( _V 
\  Fin ) )
9 disjdif 4040 . . . . . . . . . 10  |-  ( Fin 
i^i  ( _V  \  Fin ) )  =  (/)
108, 9eqtri 2644 . . . . . . . . 9  |-  ( ( _V  \  Fin )  i^i  Fin )  =  (/)
11 pnfex 10093 . . . . . . . . . . 11  |- +oo  e.  _V
1211fconst 6091 . . . . . . . . . 10  |-  ( ( _V  \  Fin )  X.  { +oo } ) : ( _V  \  Fin ) --> { +oo }
13 ffn 6045 . . . . . . . . . 10  |-  ( ( ( _V  \  Fin )  X.  { +oo }
) : ( _V 
\  Fin ) --> { +oo }  ->  ( ( _V 
\  Fin )  X.  { +oo } )  Fn  ( _V  \  Fin ) )
14 fnresdisj 6001 . . . . . . . . . 10  |-  ( ( ( _V  \  Fin )  X.  { +oo }
)  Fn  ( _V 
\  Fin )  ->  (
( ( _V  \  Fin )  i^i  Fin )  =  (/)  <->  ( ( ( _V  \  Fin )  X.  { +oo } )  |`  Fin )  =  (/) ) )
1512, 13, 14mp2b 10 . . . . . . . . 9  |-  ( ( ( _V  \  Fin )  i^i  Fin )  =  (/) 
<->  ( ( ( _V 
\  Fin )  X.  { +oo } )  |`  Fin )  =  (/) )
1610, 15mpbi 220 . . . . . . . 8  |-  ( ( ( _V  \  Fin )  X.  { +oo }
)  |`  Fin )  =  (/)
177, 16uneq12i 3765 . . . . . . 7  |-  ( ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )  |`  Fin )  u.  ( ( ( _V 
\  Fin )  X.  { +oo } )  |`  Fin )
)  =  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  u.  (/) )
18 un0 3967 . . . . . . 7  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  u.  (/) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )
1917, 18eqtri 2644 . . . . . 6  |-  ( ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )  |`  Fin )  u.  ( ( ( _V 
\  Fin )  X.  { +oo } )  |`  Fin )
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )
201, 19eqtri 2644 . . . . 5  |-  ( ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )  o.  card )  u.  (
( _V  \  Fin )  X.  { +oo }
) )  |`  Fin )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card )
21 df-hash 13118 . . . . . 6  |-  #  =  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card )  u.  (
( _V  \  Fin )  X.  { +oo }
) )
2221reseq1i 5392 . . . . 5  |-  ( #  |` 
Fin )  =  ( ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  o.  card )  u.  (
( _V  \  Fin )  X.  { +oo }
) )  |`  Fin )
23 hashgval.1 . . . . . 6  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
2423coeq1i 5281 . . . . 5  |-  ( G  o.  card )  =  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )
2520, 22, 243eqtr4i 2654 . . . 4  |-  ( #  |` 
Fin )  =  ( G  o.  card )
2625fveq1i 6192 . . 3  |-  ( (
#  |`  Fin ) `  A )  =  ( ( G  o.  card ) `  A )
27 cardf2 8769 . . . . 5  |-  card : {
x  |  E. y  e.  On  y  ~~  x }
--> On
28 ffun 6048 . . . . 5  |-  ( card
: { x  |  E. y  e.  On  y  ~~  x } --> On  ->  Fun 
card )
2927, 28ax-mp 5 . . . 4  |-  Fun  card
30 finnum 8774 . . . 4  |-  ( A  e.  Fin  ->  A  e.  dom  card )
31 fvco 6274 . . . 4  |-  ( ( Fun  card  /\  A  e. 
dom  card )  ->  (
( G  o.  card ) `  A )  =  ( G `  ( card `  A )
) )
3229, 30, 31sylancr 695 . . 3  |-  ( A  e.  Fin  ->  (
( G  o.  card ) `  A )  =  ( G `  ( card `  A )
) )
3326, 32syl5eq 2668 . 2  |-  ( A  e.  Fin  ->  (
( #  |`  Fin ) `  A )  =  ( G `  ( card `  A ) ) )
34 fvres 6207 . 2  |-  ( A  e.  Fin  ->  (
( #  |`  Fin ) `  A )  =  (
# `  A )
)
3533, 34eqtr3d 2658 1  |-  ( A  e.  Fin  ->  ( G `  ( card `  A ) )  =  ( # `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    |` cres 5116    o. ccom 5118   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065   reccrdg 7505    ~~ cen 7952   Fincfn 7955   cardccrd 8761   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   NN0cn0 11292   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-hash 13118
This theorem is referenced by:  hashginv  13121  hashfz1  13134  hashen  13135  hashcard  13146  hashcl  13147  hashgval2  13167  hashdom  13168  hashun  13171  fz1isolem  13245
  Copyright terms: Public domain W3C validator