| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-haus | Structured version Visualization version Unicode version | ||
| Description: Define the class of all Hausdorff spaces. A Hausdorff space is a topology in which distinct points have disjoint open neighborhoods. Definition of Hausdorff space in [Munkres] p. 98. (Contributed by NM, 8-Mar-2007.) |
| Ref | Expression |
|---|---|
| df-haus |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cha 21112 |
. 2
| |
| 2 | vx |
. . . . . . . 8
| |
| 3 | 2 | cv 1482 |
. . . . . . 7
|
| 4 | vy |
. . . . . . . 8
| |
| 5 | 4 | cv 1482 |
. . . . . . 7
|
| 6 | 3, 5 | wne 2794 |
. . . . . 6
|
| 7 | vn |
. . . . . . . . . 10
| |
| 8 | 2, 7 | wel 1991 |
. . . . . . . . 9
|
| 9 | vm |
. . . . . . . . . 10
| |
| 10 | 4, 9 | wel 1991 |
. . . . . . . . 9
|
| 11 | 7 | cv 1482 |
. . . . . . . . . . 11
|
| 12 | 9 | cv 1482 |
. . . . . . . . . . 11
|
| 13 | 11, 12 | cin 3573 |
. . . . . . . . . 10
|
| 14 | c0 3915 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | wceq 1483 |
. . . . . . . . 9
|
| 16 | 8, 10, 15 | w3a 1037 |
. . . . . . . 8
|
| 17 | vj |
. . . . . . . . 9
| |
| 18 | 17 | cv 1482 |
. . . . . . . 8
|
| 19 | 16, 9, 18 | wrex 2913 |
. . . . . . 7
|
| 20 | 19, 7, 18 | wrex 2913 |
. . . . . 6
|
| 21 | 6, 20 | wi 4 |
. . . . 5
|
| 22 | 18 | cuni 4436 |
. . . . 5
|
| 23 | 21, 4, 22 | wral 2912 |
. . . 4
|
| 24 | 23, 2, 22 | wral 2912 |
. . 3
|
| 25 | ctop 20698 |
. . 3
| |
| 26 | 24, 17, 25 | crab 2916 |
. 2
|
| 27 | 1, 26 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: ishaus 21126 |
| Copyright terms: Public domain | W3C validator |